题目:

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Hide Similar Problems

(M) Unique Binary Search Trees II

 

链接: http://leetcode.com/problems/unique-binary-search-trees/

题解:

用DP求catalan number。  Cn+1 = ∑(Cn - i * Ci ), i 的范围是( 0 ~ n)。公式不太好写,改天要用Latex编辑一下。。有机会的话也要好好学习一下解析组合数学 - Analytic Combinatorics。Sedgewick有本书专门讲这个。

Time Complexity - O(n), Space Complexity - O(n)。

public class Solution {
public int numTrees(int n) { //catalan number
if(n <= 0)
return n;
int[] dp = new int[n + 1];
dp[0] = 1; for(int i = 1; i < dp.length; i++) {
for(int j = 0; j < i; j++) {
dp[i] += dp[(i - 1) - j] *dp[j];
}
} return dp[n];
}
}

或者用catalan数的另外一种推导,也是dp。

public class Solution {
public int numTrees(int n) { //Catalan number Cn+1 = 2(2n + 1)/ (n+2) * Cn
if(n < 0)
return 0; int[] count = new int[n + 1];
count[0] = 1; for(int i = 1; i < n + 1;i++)
count[i] = (int) (count[i - 1] * 2.0 *(2.0 *(i - 1) + 1.0) /(i - 1.0 + 2)); return count[n];
}
}

二刷:

求catalan number, 公式是Cn+1 = ∑(Cn - i * Ci ), 求和的范围是[0, n] 前后闭

Java:

public class Solution {
public int numTrees(int n) {
if (n <= 0) {
return n;
}
int[] dp = new int[n + 1];
dp[0] = 1;for (int i = 1; i <= n; i++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[(i - 1) - j] * dp[j];
}
}
return dp[n];
}
}

三刷:

这里要仔细注意一下dp数组的创建以及计算公式时的边界条件。 我们求第n个数的结果的话,其实是wiki公式里的第n + 1个数。所以我们建立一个长度为n + 1的一维数组dp,最后返回dp[n]就可以了。 其中Catalan number公式仍然用的是公式是Cn+1 = ∑(Cn - i * Ci ), 求和的范围是[0, n] 前后闭。所以假如我们要求dp[i], 那么内循环就是计算从0到 i-1 这 i 个数的乘积和。

Java:

Time Complexity - O(n), Space Complexity - O(n)。

public class Solution {
public int numTrees(int n) {
if (n <= 0) return 1;
int[] dp = new int[n + 1];
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[j] * dp[(i - 1) - j];
}
}
return dp[n];
}
}

题外话:

有空的话还是要学一学离散数学的各种知识。

Reference:

http://www.codecogs.com/latex/eqneditor.php

http://en.wikipedia.org/wiki/Catalan_number

http://mathworld.wolfram.com/BinaryTree.html

96. Unique Binary Search Trees的更多相关文章

  1. 52. leetcode 96. Unique Binary Search Trees

    96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...

  2. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【一天一道LeetCode】#96. Unique Binary Search Trees

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given n ...

  5. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

  6. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. 【LeetCode】96. Unique Binary Search Trees (2 solutions)

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. 96. Unique Binary Search Trees(I 和 II)

    Given n, how many structurally unique BST's (binary search trees) that store values 1-n? For example ...

  9. [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...

随机推荐

  1. 【转】winform与web 按钮button去掉边框

    ref:http://blog.csdn.net/wangzh300/article/details/5264316 WinForm的话 设置Button属性的FlatStyle为Flat,并且设置F ...

  2. 前端工程模块化——以一个php项目为例

    实现一个页面功能总是需要 JavaScript.CSS 和 Template 三种语言相互组织,所以我们真正需要的是一种可以将 JavaScript.CSS 和 Template 同时都考虑进去的模块 ...

  3. 为什么Facebook要将视频从Flash全面迁移到HTML5?

    英文原文:Why we chose to move to HTML5 video 编者按:Facebook 前端高级工程师 Daniel Baulig 解释了 Facebook 为什么要将视频全面迁移 ...

  4. mongodb 级联操作查询时,关联条件

    ObjectId id=new ObjectId("123"); c=c.where("relation_type.$id").is(id);

  5. 使用Java反射(Reflect)、自定义注解(Customer Annotation)生成简单SQL语句

    这次给大家介绍一下在Java开发过程中 使用自定义注解开发:主要知识点:            1.反射            主要用于提取注解信息            2.自定义异常  主要是为了 ...

  6. Kakfa揭秘 Day8 DirectKafkaStream代码解析

    Kakfa揭秘 Day8 DirectKafkaStream代码解析 今天让我们进入SparkStreaming,看一下其中重要的Kafka模块DirectStream的具体实现. 构造Stream ...

  7. 1046 Shortest Distance (20)

    #include<stdio.h> int main() { int n,m,a,b,tem,pre,p; int i,j; ]; while(scanf("%d",& ...

  8. ubuntu安装kernel3.10.34

    参考http://www.linuxidc.com/Linux/2014-03/98818.htm 32位系统安装 wget kernel.ubuntu.com/~kernel-ppa/mainlin ...

  9. PAT乙级真题1002. 写出这个数 (20)(解题)

    读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式:每个测试输入包含1个测试用例,即给出自然数n的值.这里保证n小于10100. 输出格式:在一行内输出n的各位数字之和的每 ...

  10. 自学JAVA总结

    2.在定义常量的时候C语言中定义为const而JAVA中为final3.在JAVA声明成员变量的时候,使用static来定义.4.在JAVA中的boolean类型只包括true和false,但是在C中 ...