Firetruck

The Center City fire department collaborates with the transportation department to maintain maps of the city which reflects the current status of the city streets. On any given day, several streets are closed for repairs or construction. Firefighters need to be able to select routes from the firestations to fires that do not use closed streets.

Central City is divided into non-overlapping fire districts, each containing a single firestation. When a fire is reported, a central dispatcher alerts the firestation of the district where the fire is located and gives a list of possible routes from the firestation to the fire. You must write a program that the central dispatcher can use to generate routes from the district firestations to the fires.

Input

The city has a separate map for each fire district. Streetcorners of each map are identified by positive integers less than 21, with the firestation always on corner #1. The input file contains several test cases representing different fires in different districts.

  • The first line of a test case consists of a single integer which is the number of the streetcorner closest to the fire.
  • The next several lines consist of pairs of positive integers separated by blanks which are the adjacent streetcorners of open streets. (For example, if the pair 4 7 is on a line in the file, then the street between streetcorners 4 and 7 is open. There are no other streetcorners between 4 and 7 on that section of the street.)
  • The final line of each test case consists of a pair of 0's.

Output

For each test case, your output must identify the case by number (CASE #1, CASE #2, etc). It must list each route on a separate line, with the streetcorners written in the order in which they appear on the route. And it must give the total number routes from firestation to the fire. Include only routes which do not pass through any streetcorner more than once. (For obvious reasons, the fire department doesn't want its trucks driving around in circles.)

Output from separate cases must appear on separate lines.

The following sample input and corresponding correct output represents two test cases.

Sample Input

6
1 2
1 3
3 4
3 5
4 6
5 6
2 3
2 4
0 0
4
2 3
3 4
5 1
1 6
7 8
8 9
2 5
5 7
3 1
1 8
4 6
6 9
0 0

Sample Output

CASE 1:
1 2 3 4 6
1 2 3 5 6
1 2 4 3 5 6
1 2 4 6
1 3 2 4 6
1 3 4 6
1 3 5 6
There are 7 routes from the firestation to streetcorner 6.
CASE 2:
1 3 2 5 7 8 9 6 4
1 3 4
1 5 2 3 4
1 5 7 8 9 6 4
1 6 4
1 6 9 8 7 5 2 3 4
1 8 7 5 2 3 4
1 8 9 6 4
There are 8 routes from the firestation to streetcorner 4.

 

// 题意:给一个无向图,输出从结点1到给定结点的所有路径,要求结点不能重复经过

// 算法:数据不难,直接回溯即可。但是需要注意两点:

// 1. 要事先判断路径是否存在,否则会超时

// 2. 必须按照字典序从小到大输出各路径。本程序的解决方法是给每个点的相邻点编号排序

预判dfs复杂度:

回溯dfs复杂度:O(b^n) b为分支数

算法耗时 9 ms

 

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=21+5;
int target, cnt;
int route[maxn], vis[maxn];
vector<int> G[maxn]; void dfs(int d, int v)
{
if(v==target) {
cnt++;
for(int i=0;i<d-1;i++) printf("%d ", route[i]);
printf("%d\n", route[d-1]);
return;
}
for(int i=0;i<G[v].size();i++)
{
int u=G[v][i];
if(!vis[u]) {
route[d]=u;
vis[u]=1; dfs(d+1, u); vis[u]=0;
}
}
} bool can_reach_target(int u)
{
if(u==target) return true;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v]) {
vis[v]=1;
if(can_reach_target(v)) return true;
}
}
return false;
} int main()
{
int kase=0;
while(scanf("%d", &target)==1) {
int u,v;
for(int i=0;i<maxn;i++) G[i].clear();
cnt=0;
while(scanf("%d%d", &u, &v)==2&&(u||v)) {
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0;i<maxn;i++) sort(G[i].begin(), G[i].end()); printf("CASE %d:\n", ++kase);
memset(vis, 0, sizeof(vis));
if(vis[1]=1, can_reach_target(1)) {
memset(vis, 0, sizeof(vis));
route[0]=1;vis[1]=1;
dfs(1, 1);
}
printf("There are %d routes from the firestation to streetcorner %d.\n", cnt, target);
} return 0;
}

 

解法二:双向搜索进行剪枝

从起点开始搜索之前,很有必要先确定一下有那些路是可以到达目标的。

如何确定那些路可以到目标呢? 我们只需要先从目标点开始进行搜索,把所有搜索到得路径都进行标记。

然后,再从起点处进行搜索,在搜索之前,要先判断一下这个路径是否有被之前标记过,如果没有被标记,那么说明它是不可能

走到目标处的。这样的话,就不会盲目地去走了,也大大提高了效率。

 

下面代码加入一个mark数组,表示终点可以到达的点。mark_can_reach_target复杂度也是O(E)啦。 算法耗时 9 ms

 

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=21+5;
int target, cnt;
int route[maxn], vis[maxn], mark[maxn];
vector<int> G[maxn]; void dfs(int d, int v)
{
if(v==target) {
cnt++;
for(int i=0;i<d-1;i++) printf("%d ", route[i]);
printf("%d\n", route[d-1]);
return;
}
for(int i=0;i<G[v].size();i++)
{
int u=G[v][i];
if(!vis[u] && mark[u]) {
route[d]=u;
vis[u]=1; dfs(d+1, u); vis[u]=0;
}
}
} bool mark_can_reach_target(int u)
{
bool reach_start=false;
if(mark[u])
return false;
mark[u]=1;
if(u==1)
reach_start=true;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(mark_can_reach_target(v))
reach_start=true;
}
return reach_start;
} int main()
{
int kase=0;
while(scanf("%d", &target)==1) {
int u,v;
for(int i=0;i<maxn;i++) G[i].clear();
cnt=0;
while(scanf("%d%d", &u, &v)==2&&(u||v)) {
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0;i<maxn;i++) sort(G[i].begin(), G[i].end()); printf("CASE %d:\n", ++kase);
memset(mark, 0, sizeof(mark));
if(mark_can_reach_target(target)) {
memset(vis, 0, sizeof(vis));
route[0]=1;vis[1]=1;
dfs(1, 1);
}
printf("There are %d routes from the firestation to streetcorner %d.\n", cnt, target);
} return 0;
}

uva208 - Firetruck的更多相关文章

  1. UVa-208 Firetruck (图的DFS)

    UVA-208 天道好轮回.UVA饶过谁. 就是一个图的DFS. 不过这个图的边太多,要事先判一下起点和终点是否联通(我喜欢用并查集),否则会TLE. #include <iostream> ...

  2. UVA-208 Firetruck (回溯)

    题目大意:给一张无向图,节点编号从1到n(n<=20),按字典序输出所有从1到n的路径. 题目分析:先判断从1是否能到n,然后再回溯. 注意:这道题有坑,按样例输出会PE. 代码如下: # in ...

  3. UVA208 Firetruck 消防车(并查集,dfs)

    要输出所有路径,又要字典序,dfs最适合了,用并查集判断1和目的地是否连通即可 #include<bits/stdc++.h> using namespace std; ; int p[m ...

  4. 7-1 FireTruck 消防车 uva208

    题意: 输入一个n <=20 个结点的无向图以及某个结点k   按照字典序从小到大顺序输出从结点1到结点k的所有路径  要求结点不能重复经过 标准回溯法 要实现从小到大字典序 现在数组中排序好即 ...

  5. 【习题 7-1 UVA-208】Firetruck

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理一下终点能到达哪些点. 暴力就好. 输出结果的时候,数字之间一个空格.. [代码] /* 1.Shoud it use lon ...

  6. Uva 208 - Firetruck

    [题目链接]http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&p ...

  7. UVa 208 - Firetruck 回溯+剪枝 数据

    题意:构造出一张图,给出一个点,字典序输出所有从1到该点的路径. 裸搜会超时的题目,其实题目的数据特地设计得让图稠密但起点和终点却不相连,所以直接搜索过去会超时. 只要判断下起点和终点能不能相连就行了 ...

  8. UVA - 208 Firetruck(消防车)(并查集+回溯)

    题意:输入着火点n,求结点1到结点n的所有路径,按字典序输出,要求结点不能重复经过. 分析:用并查集事先判断结点1是否可以到达结点k,否则会超时.dfs即可. #pragma comment(link ...

  9. uva208

    一道简单的路径打印,首先需要一次dfs判断能否从1到达目标点,否则可能会超时.还有一点就是那个格式需要注意下,每条路径前没有空格(看起来好像有3个空格)-. AC代码: #include<cst ...

随机推荐

  1. MySQL基础之第17章 MySQL日志

    17.1.日志简介 二进制日志错误日志通用查询日志慢查询日志 17.2.二进制日志 二进制日志也叫作变更日志(update log),主要用于记录数据库的变化情况.通过二进制日志可以查询MySQL数据 ...

  2. Linux makefile教程之函数七[转]

    使用函数 ———— 在Makefile中可以使用函数来处理变量,从而让我们的命令或是规则更为的灵活和具有智能.make所支持的函数也不算很多,不过已经足够我们的操作了.函数调用后,函数的返回值可以当做 ...

  3. Linux中用stat命令查看文件时3个时间点解析

    有些时候,我们需要在Linux中使用stat命令来查看文件的详细信息.另外联想下,ls -l命令显示的是什么时间,touch命令修改文件的时间戳,修改的又是什么时间?在这里我们一起来试验下. 首先,我 ...

  4. 15、NFC技术:使用Android Beam技术传输文件

    传输文件的API 从Android4.1开始,NfcAdapter类增加了如下两个推送数据的方法. NfcAdapter.setBeamPushUris NfcAdapter.setBeamPushU ...

  5. 【转】linux之tune2fs命令

    转自:http://czmmiao.iteye.com/blog/1749232 tune2fs简介 tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外 ...

  6. Selenium2Library系列 keywords 之 _ElementKeywords

    #公有方法: (1)current_frame_contains(self, text, loglevel='INFO') (2)current_frame_should_not_contain(se ...

  7. Heilmeier's criteria

    介绍个Criteria:Heilmeier's criteria 在Alex Smola 的  SML: Scalable Machine Learning 课程网页上看到的,写的非常好. Heilm ...

  8. 链表回文串判断&&链式A+B

    有段时间没有练习了,链表回文串判断用到了栈.链式A+B将没有的项用0补充.链表有没有头节点,及结点和链表的区别,即pNode和pHead. //#include<iostream> //u ...

  9. js遇到这样基础题,看你能不能作对呢

    var a = (function() { return typeof arguments; })(); alert(a); //Object var b = (function(x) { delet ...

  10. 在linnux下,配置自动备份oacle

    以oracle身份登录到linux,在oracle home目录下创建目录 shell $ mkdir shell 创建自动备份脚本 $ cd shell $ touch expdp.sh $ chm ...