【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=1835

【题意】

有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄建基站的费用为c[i],如果在距离村i不超过s[i]内有基站则该村被覆盖,村i不被覆盖的补偿费为w[i],求最少花费。

【思路】

设f[i][j]表示第i个村建第j个基站的最小花费,则有转移式:

f[i][j]=min{ f[k][j-1]+cost(k,i) } + c[i] ,j-1<=k<=i-1

cost(k,i)=sigma{ w[x] } k+1<=x<=i-1 , 且x未被覆盖

f[][]需要求一个区间最小值,我们尝试用线段树维护每一层的这个值。

枚举j,考虑每一层i。

我们设st[i],ed[i]分别表示在i左右距离i最远的st[i],ed[i]建基站依旧可以覆盖到i,假设我们已经求完了f[i][j]要求f[i+1][j],考虑那些恰可以被i覆盖到而不能被i+1覆盖到的,即满足ed[x]=i的点,将[1..st[x]-1]区间内的线段树值都加w[x],意为前一个基站k位于[1..st[x]-1]那么点x因不会被覆盖到需要做出赔偿。求f[i]的时候查询区间[1..i-1]内线段树值的最小即可。

其中st[i],ed[i]可以用二分法求。

线段树提供区间操作区间查询的操作。

总的时间复杂度为O(nmlogn)

辣鸡线段树,毁我青春(连个线段树都不会写了T^T

【代码】

 #include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long ll;
const int N = 1e5+;
const int inf = 1e9; ll read() {
char c=getchar();
ll f=,x=;
while(!isdigit(c)) {
if(c=='-') f=-; c=getchar();
}
while(isdigit(c))
x=x*+c-'',c=getchar();
return x*f;
} int n,K; ll f[N];
ll d[N],c[N],s[N],w[N],st[N],ed[N];
vector<ll> ep[N]; struct Tnode {
int l,r; ll v,tag;
}T[N<<]; void pushdown(int u)
{
if(T[u].l==T[u].r||(!T[u].tag)) return ;
ll& t=T[u].tag;
T[u<<].v+=t,T[u<<].tag+=t;
T[u<<|].v+=t,T[u<<|].tag+=t;
t=;
}
void maintain(int u)
{
T[u].v=min(T[u<<].v,T[u<<|].v);
}
void build(int u,int l,int r)
{
T[u].l=l,T[u].r=r;
T[u].tag=;
if(l==r) T[u].v=f[l];
else {
int mid=l+r>>;
build(u<<,l,mid);
build(u<<|,mid+,r);
maintain(u);
}
}
void Add(int u,int L,int R,ll x)
{
if(L>R) return ; //处理 L>R
pushdown(u);
if(L<=T[u].l&&T[u].r<=R)
T[u].v+=x,T[u].tag+=x;
else {
int mid=T[u].l+T[u].r>>;
if(L<=mid) Add(u<<,L,R,x);
if(mid<R) Add(u<<|,L,R,x);
maintain(u);
}
}
ll query(int u,int L,int R)
{
if(L>R) return ;
pushdown(u);
if(L<=T[u].l&&T[u].r<=R) return T[u].v;
else {
int mid=T[u].l+T[u].r>>; ll ans=inf;
if(L<=mid) ans=min(ans,query(u<<,L,R));
if(mid<R) ans=min(ans,query(u<<|,L,R));
return ans;
}
} //lower_bound定义为找到第一个不小于v的数的指针
void init()
{
n=read(),K=read();
FOR(i,,n) d[i]=read();
FOR(i,,n) c[i]=read();
FOR(i,,n) s[i]=read();
FOR(i,,n) w[i]=read();
n++,K++;
d[n]=inf; w[n]=inf;
FOR(i,,n) {
int l=d[i]-s[i],r=d[i]+s[i];
l=lower_bound(d+,d+n+,l)-d;
r=lower_bound(d+,d+n+,r)-d;
if(d[i]+s[i]<d[r]) r--;
st[i]=l,ed[i]=r;
ep[ed[i]].push_back(i);
}
}
ll dp()
{
ll ans,tmp=;
FOR(i,,n) {
f[i]=tmp+c[i];
FOR(j,,(int)ep[i].size()-)
tmp+=w[ep[i][j]];
}
ans=f[n];
FOR(j,,K) {
build(,,n);
FOR(i,,n) {
f[i]=query(,,i-)+c[i];
FOR(k,,(int)ep[i].size()-) {
int x=ep[i][k];
Add(,,st[x]-,w[x]);
}
}
ans=min(ans,f[n]);
}
return ans;
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
init();
printf("%lld",dp());
return ;
}

bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)的更多相关文章

  1. BZOJ 1835 [ZJOI2010]base 基站选址:线段树优化dp

    传送门 题意 有 $ n $ 个村庄在一排直线上,现在要建造不超过 $ K $ 个通讯基站,基站只能造在村庄处. 第 $ i $ 个村庄距离第 $ 1 $ 个村庄的距离为 $ D_i $ .在此建造基 ...

  2. BZOJ 1835: [ZJOI2010]base 基站选址 [序列DP 线段树]

    1835: [ZJOI2010]base 基站选址 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立 ...

  3. BZOJ 1835: [ZJOI2010]base 基站选址(DP,线段树)

    可以很容易的写出dp方程: F[i][j]=min(F[l][j-1]+w[l][i])+c[i] (w[i][j]是从l+1到i-1这些点p里,所有满足d[p]+s[p]<d[i] & ...

  4. BZOJ1835: [ZJOI2010]base 基站选址【线段树优化DP】

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  5. 2018.11.06 bzoj1835: [ZJOI2010]base 基站选址(线段树优化dp)

    传送门 二分出每个点不需要付www贡献的范围,然后可以推出转移式子: f[i][j]=f[i−1][k]+value(k+1,j)+c[i]f[i][j]=f[i-1][k]+value(k+1,j) ...

  6. bzoj 1835: [ZJOI2010]base 基站选址

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  7. bzoj[1835][ZJOI2010]base 基地选址

    bzoj[1835][ZJOI2010]base 基地选址 标签: 线段树 DP 题目链接 题解 这个暴力DP的话应该很容易看出来. dp[i][j]表示造了i个通讯站,并且j是第i个的最小费用. \ ...

  8. bzoj 1835 base 基站选址 - 动态规划 - 线段树

    题目传送门 需要高级权限的传送门 题目大意 有$n$个村庄坐落在一条直线上,第$i \ \ \ (i>1)$个村庄距离第$1$个村庄的距离为$D_i$.需要在这些村庄中建立不超过$K$个通讯基站 ...

  9. BZOJ 1835 基站选址(DP+线段树)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

随机推荐

  1. [Windows Azure] Querying Tables and Entities

    Constructing Filter Strings When constructing a filter string, keep these rules in mind: Use the log ...

  2. 原生js获取window高和宽

    视口的宽和高 var pw = window.innerWidth, ph = window.innerHeight; if(typeof pw != "number"){ pw ...

  3. 常用汇编命令&&OD命令总结

    汇编32位CPU所含有的寄存器有: 4个数据寄存器(EAX.EBX.ECX和EDX)对低16位数据的存取,不会影响高16位的数据.这些低16位寄存器分别命名为:AX.BX.CX和DX,它和先前的CPU ...

  4. C/C++中几种经典的垃圾回收算法

    1.引用计数算法 引用计数(Reference Counting)算法是每个对象计算指向它的指针的数量,当有一个指针指向自己时计数值加1:当删除一个指向自己的指针时,计数值减1,如果计数值减为0,说明 ...

  5. 在NEXUS中加入自己定义的第三方PROXIES代理库

    就是要等会耐心,更新好之后,才能在PUBLIC库里进行操作. 下图是JBOSS的

  6. Maven学习总结(四)——Maven核心概念

    一.Maven坐标 1.1.什么是坐标? 在平面几何中坐标(x,y)可以标识平面中唯一的一点. 1.2.Maven坐标主要组成 groupId:组织标识(包名) artifactId:项目名称 ver ...

  7. 212. Word Search II

    题目: Given a 2D board and a list of words from the dictionary, find all words in the board. Each word ...

  8. Jquery attr()方法 属性赋值和属性获取

    jquery中用attr()方法来获取和设置元素属性,attr是attribute(属性)的缩写,在jQuery DOM操作中会经常用到attr(),attr()有4个表达式. 1. attr(属性名 ...

  9. 【HDOJ】4043 FXTZ II

    1. 题目描述有n个球,第i个球的伤害值为$2^i-1, i \in [1,n]$.有甲乙两个人,每次由甲选择n个球中的一个,用它以相同概率攻击自己或者乙,同时彻底消耗这个球.这样的攻击最多进行n次. ...

  10. Complete The Pattern #6 - Odd Ladder

    Complete The Pattern #6 - Odd Ladder Task: You have to write a function pattern which creates the fo ...