伸展树概念

伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。

(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。

(02) 除了拥有二叉查找树的性质之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。

假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生,它是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。

相比于"二叉查找树"和"AVL树",学习伸展树时需要重点关注是"伸展树的旋转算法"。

伸展树实现

伸展树的节点包括的几个组成元素:

(01) key -- 是关键字,是用来对伸展树的节点进行排序的。

(02) left -- 是左孩子。

(03) right -- 是右孩子。

旋转算法

算法描述:rotate left/rotate right –> link left/link right –> assemble

(a):伸展树中存在"键值为key的节点"。 * 将"键值为key的节点"旋转为根节点。

(b):伸展树中不存在"键值为key的节点",并且key < tree->key。

b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。

b-2 "键值为key的节点"的前驱节点不存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。

(c):伸展树中不存在"键值为key的节点",并且key > tree->key。

c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。

c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。

树-伸展树(Splay Tree)的更多相关文章

  1. AVL树、splay树(伸展树)和红黑树比较

    AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实 ...

  2. HDU-3436 Queue-jumpers 树状数组 | Splay tree删除,移动

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3436 树状数组做法<猛戳> Splay tree的经典题目,有删除和移动操作.首先要离散化 ...

  3. [SinGuLaRiTy] SplayTree 伸展树

    [SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted Fr ...

  4. 二叉树总结(五)伸展树、B-树和B+树

    一.伸展树 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作. 因为,它是一颗二叉排序树,所以,它拥有二叉查找树的性质:除此之外,伸展树还具有的一个特点 ...

  5. 二叉树、红黑树、伸展树、B树、B+树

    好多树啊,程序猿砍树记,吼吼. 许多程序要解决的关键问题是:快速定位特定排序项的能力. 第一类:散列 第二类:字符串查找 第三类:树算法 树算法可以在辅助存储器中存储大量的数据. 二叉树.红黑树和伸展 ...

  6. Splay(区间翻转)&树套树(Splay+线段树,90分)

    study from: https://tiger0132.blog.luogu.org/slay-notes P3369 [模板]普通平衡树 #include <cstdio> #inc ...

  7. [学习笔记] Splay Tree 从入门到放弃

    前几天由于出行计划没有更博QwQ (其实是因为调试死活调不出来了TAT我好菜啊) 伸展树 伸展树(英语:Splay Tree)是一种二叉查找树,它能在O(log n)内完成插入.查找和删除操作.它是由 ...

  8. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

  9. [转] Splay Tree(伸展树)

    好久没写过了,比赛的时候就调了一个小时,差点悲剧,重新复习一下,觉得这个写的很不错.转自:here Splay Tree(伸展树) 二叉查找树(Binary Search Tree)能够支持多种动态集 ...

随机推荐

  1. spring4+hibernate3

    环境说明:spring4.0+hibernate3 数据库:oracle 连接池:c3p0 项目结构: lib中的jar: 一.配置spring.xml 说明:这里采用的配置模式将hibernateT ...

  2. WEB开发者必备的7个JavaScript函数

    防止高频调用的debounce函数 这个 debounce 函数对于那些执行事件驱动的任务来说是必不可少的提高性能的函数.如果你在使用scroll, resize, key*等事件触发执行任务时不使用 ...

  3. 【扩展欧几里得】Bzoj 1477:青蛙的约会

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

  4. 【C++基础】sizeof 数组 指针 空NULL

    笔试遇到很多sizeof的小题,博主基础堪忧,怒总结如下,还是要巩固基础啊啊啊! sizeof操作符 对象所占 栈内存空间的大小,单位是字节 关键词:char  数组 指针 结构体 class [注意 ...

  5. VS2005 VS2008 Manifest 配置问题总结

    一.问题 编译某个遗留工程后,运行程序时报错,“由于应用程序的配置不正确,应用程序无法启动.重新安装应用程序可能会解决这个问题.” 查看生成的Manifest文件如下: <?xml versio ...

  6. 关于PYTHON的反射,装饰的练习

    从基本概念,简单例子才能慢慢走到高级一点的地方. 另外,PYTHON的函数式编程也是我很感兴趣的一点. 总体而言,我觉得OOP可以作大的框架和思路,FP能作细节实现时的优雅牛X. ~~~~~~~~~~ ...

  7. linux踢人命令 pkill踢人用法

    首先使用who命令查看在线用户,然后踢人. 强制踢人命令格式:pkill -kill -t tty 解释: pkill -kill -t 踢人命令 tty 所踢用户的TTY或者pts/x(x代表数字) ...

  8. EntityFreamWork和Mvc 精品知识点

    定义了DbRepository<TEntity>:IRepository<TEntity> ,SimpleDbContext继承了DbContext, UnitOfWork:I ...

  9. tinyXml在linux下的使用

    [下载] 一.下载 xml 软件包:tinyxml_2_6_2.zipTinyxml(轻量级 c++)下载地址:http://sourceforge.net/projects/tinyxml/?sou ...

  10. VPN+NAT实现代理服务器功能

    前话 用VPN+NAT再结合路由可以实现很方便的代理功能,适用于有一台能方便连接Internet的电脑,其他不在同一子网内的电脑能够连接到这台机器但不能完全访问Internet.比如好些学校的校园网, ...