这个算法,主要是为输出一个无环图的拓扑序列

算法思想:

主要依赖一个栈,用来存放没有入度的节点,每次读取栈顶元素,并将栈顶元素的后继节点入度减一,如果再次出现入度为零的节点,就加入到栈中。参考《大话数据结构》,写下下面完整代码,并发现,其中程序的进行,出现错误。v6执行完,应该执行v9,因为此时v9是站顶元素,并不是v0.

算法流程:

int topGraph(graph g){
EdgeNode *e;
int i,k,gettop;
int top = ;
int count = ;
int *stack;
stack = (int *)malloc(g->numVertexes * sizeof(int));
for(i=;i<g->numVertexes;i++){
if(g->headlist[i].in == ) //把入度为0的,即没有入度的点入栈
stack[++top] = i;
}
while(top){
gettop = stack[top--];
printf("%d ",gettop);
count++;
for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
k = e->data;
if(!(--g->headlist[k].in))
stack[++top] = k;
}
}
if(count < g->numVertexes)
return ERROR;
else
return OK;
}

全部代码:

#include <stdio.h>
#include <stdlib.h>
#define MAX 14
#define ERROR 1
#define OK 0
typedef struct edgeNode{
int data;
struct edgeNode *next;
}EdgeNode;
typedef struct headNode{
int in;
int data;
EdgeNode *fnode;
}HeadNode,HeadList[MAX];
typedef struct{
HeadList headlist;
int numEdges,numVertexes;
}Graph,*graph; void initGraph(graph g);
int inputInfo(graph g,int tar,int in,int data,int first);
void printGraph(graph g);
int topGraph(graph g);
int main(){
Graph *g = (Graph *)malloc(sizeof(Graph));
initGraph(g);
printGraph(g); if(topGraph(g) == ERROR)
printf("有环路!\n");
else
printf("没有环路!\n"); free(g);
getchar();
return ;
}
int topGraph(graph g){
EdgeNode *e;
int i,k,gettop;
int top = ;
int count = ;
int *stack;
stack = (int *)malloc(g->numVertexes * sizeof(int));
for(i=;i<g->numVertexes;i++){
if(g->headlist[i].in == ) //把入度为0的,即没有入度的点入栈
stack[++top] = i;
}
while(top){
gettop = stack[top--];
printf("%d ",gettop);
count++;
for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
k = e->data;
if(!(--g->headlist[k].in))
stack[++top] = k;
}
}
if(count < g->numVertexes)
return ERROR;
else
return OK;
}
void printGraph(graph g){
int i;
printf("vertex:%d,edges:%d\n",g->numVertexes,g->numEdges);
EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
for(i=;i<MAX;i++){
printf("[in:%d]%d",g->headlist[i].in,g->headlist[i].data);
e = g->headlist[i].fnode;
while(e != NULL){
printf("->%d",e->data);
e = e->next;
}
printf("\n");
}
free(e);
}
void initGraph(graph g){
g->numVertexes = MAX;
g->numEdges = ;
int i;
for(i=;i<MAX;i++){
g->headlist[i].fnode = NULL;
}
inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,-); inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,-); inputInfo(g,,,,); inputInfo(g,,,,-);
}
int inputInfo(graph g,int tar,int in,int data,int first){
g->numEdges++; if(first == -){ //没有后继的边节点
g->headlist[tar].in = in;
g->headlist[tar].data = data;
return ;
} if(!g->headlist[tar].fnode){ //观察是否已经初始化
g->headlist[tar].in = in;
g->headlist[tar].data = data;
}
EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
e->data = first;
e->next = g->headlist[tar].fnode;
g->headlist[tar].fnode = e;
return ;
}

执行示例:

AOV网络拓扑排序的更多相关文章

  1. AOV拓扑排序实验总结-1

    AOV拓扑排序实验总结-1   实验数据:1.实验输入数据在input.txt文件中2.对于n是指有顶点n个,数据的结束标志是一行0 0.   实验目的:获取优秀的AOV排序算法模板   数据结构安排 ...

  2. AOV拓扑排序实验-2-AOV类的实现

    下面是这个类的实现代码: //这只是一个基本的框架,没有封装 #include<iostream> #include<cstdio> #include<malloc.h& ...

  3. 设计AOV网拓扑排序的算法

    拓扑排序 对一个有向图构造拓扑序列的过程称为拓扑排序(不唯一) 思想 从AOV网选择一个没有前驱的顶点并输出 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧 重复上述两步,直到全部顶点都被输出, ...

  4. [SOJ] Ordering Tasks

    1940. Ordering Tasks Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description John has n task ...

  5. Hadoop 基石HDFS 一文了解文件存储系统

    @ 目录 前言:浅谈Hadoop Hadoop的发展历程 1.1 Hadoop产生背景 1.引入HDFS设计 1.1 HDFS主要特性 2.HDFS体系结构 HDFS工作流程机制 1.各个节点是如何互 ...

  6. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  7. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  8. AOV网络和Kahn算法拓扑排序

    1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题.   一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...

  9. 算法与数据结构(七) AOV网的拓扑排序(Swift版)

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

随机推荐

  1. JQuery Ajax 在asp.net中使用小结

    自从有了JQuery,Ajax的使用变的越来越方便了,但是使用中还是会或多或少的出现一些让人短时间内痛苦的问题.本文暂时总结一些在使用JQuery Ajax中应该注意的问题,如有不恰当或者不完善的地方 ...

  2. context:property-placeholder

    这个在spring中配置文件中是非常常用的. context:property-placeholder大大的方便了我们数据库的配置. 只需要在spring的配置文件里添加一句:<context: ...

  3. UVA 10765 Doves and bombs(双连通分量)

    题意:在一个无向连通图上,求任意删除一个点,余下连通块的个数. 对于一个非割顶的点,删除之后,原图仍连通,即余下连通块个数为1:对于割顶,余下连通块个数>=2. 由于是用dfs查找双连通分量,树 ...

  4. UVA 1659 Help Little Laura 帮助小劳拉 (最小费用流,最小循环流)

    (同时也是HDU 2982,UVA的数据多) 题意:平面上有m条有向线段连接了n个点.你从某个点出发顺着有向线段行走,给走过的每条线段涂一种不同的颜色,最后回到起点.你可以多次行走,给多个回路涂色(要 ...

  5. apache开源项目-- Velocity

    Velocity是一个基于java的模板引擎(template engine).它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象. 当Veloci ...

  6. Mac 配置jdk

    1.打开终端,开始操作 cd ~touch.bash_profile vi .bash_profile 2.在此文本中添加以下内容 export JAVA_HOME=/Library/Java/Jav ...

  7. 【转】declare-styleable的使用(自定义控件) 以及declare-styleable中format详解

    原文网址:http://www.cnblogs.com/622698abc/p/3348692.html declare-styleable是给自定义控件添加自定义属性用的 1.首先,先写attrs. ...

  8. ISAPI在IIS7上的配置

    主要介绍ISAPI的作用.ISAPI在IIS7上的配置.开发ISAPI的基本内容及使用VS 2008配置ISAPI DLL开发项目. 一.ISAPI介绍 缩写词=Internet Server App ...

  9. 一幅图概括Android测试的方方面面

    一幅图概括Android测试的方方面面,来自网络: 另外的一些测试技巧 1,测试应用程序时,环境是很大的一个影响因素:系统时间,网络情况,异常关闭等 2,测试应用程序时,第三方嵌入程序也是有影响的.如 ...

  10. Python 核心数据类型

    1.Python中一切皆对象 2.Python中不需要申明对象类型,对象的类型由运行的表达式决定 3.创建了对象意味着绑定了对象的操作到此对象,也就是在固有的对象上只能调用该对象特有的操作.比如只能将 ...