Codeforces - 617E 年轻人的第一道莫队
我对莫队算法最为纠结的地方就是区间端点处,应该是像代码里那样理解吧
cnt[i]表示i出现的次数
maxn开2e6比较保险
/*H E A D*/
struct Query{
int l,r,id;
}q[maxn];
int size;
bool cmp(Query a,Query b){
if(a.l/size!=b.l/size) return a.l/size<b.l/size;
else return a.r<b.r;
}
ll cnt[maxn],a[maxn];
ll ans[maxn];
int main(){
int n,m,k;
while(cin>>n>>m>>k){
memset(cnt,0,sizeof cnt);
rep(i,1,n) a[i]=read();
rep(i,2,n) a[i]^=a[i-1];
rep(i,1,m){
q[i].l=read();
q[i].r=read();
q[i].id=i;
}
size=sqrt(n);
sort(q+1,q+1+m,cmp);
int l=1,r=0;//l-1=0 r=0
cnt[0]++;
ll tmp=0;
rep(i,1,m){
while(l<q[i].l){//删去[l,q[i].l-1]
cnt[a[l-1]]--;
tmp-=cnt[a[l-1]^k];
l++;
}
while(l>q[i].l){//添加[q[i].l,l-1]
tmp+=cnt[a[l-2]^k];//l-1-1
cnt[a[l-2]]++;
l--;
}
while(r<q[i].r){//增加[r+1,q[i].r]
tmp+=cnt[a[r+1]^k];
cnt[a[r+1]]++;
r++;
}
while(r>q[i].r){//删去[q[i].r+1,r]
cnt[a[r]]--;
tmp-=cnt[a[r]^k];
r--;
}
ans[q[i].id]=tmp;
}
rep(i,1,m) println(ans[i]);
}
return 0;
}
Codeforces - 617E 年轻人的第一道莫队的更多相关文章
- Codeforces - 617E 年轻人的第一道莫队·改
题意:给出\(n,m,k,a[1...n]\),对于每次询问,求\([l,r]\)中\(a[i] \ xor \ a[i+1] \ xor \ ...a[j],l<=i<=j<=r\ ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- Codeforces 617E XOR and Favorite Number莫队
http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...
- XOR and Favorite Number CodeForces - 617E(前缀异或+莫队)
题意原文地址:https://blog.csdn.net/chenzhenyu123456/article/details/50574169 题意:有n个数和m次查询,每次查询区间[l, r]问满足a ...
- codeforces 617E. XOR and Favorite Number 莫队
题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...
- Codeforces 351D Jeff and Removing Periods(莫队+区间等差数列更新)
题目链接:http://codeforces.com/problemset/problem/351/D 题目大意:有n个数,每次可以删除掉数值相同并且所在位置成等差数列的数(只删2个数或者只删1个数应 ...
- CODEFORCES 340 XOR and Favorite Number 莫队模板题
原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...
- CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)
题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...
- codeforces 220B . Little Elephant and Array 莫队+离散化
传送门:https://codeforces.com/problemset/problem/220/B 题意: 给你n个数,m次询问,每次询问问你在区间l,r内有多少个数满足其值为其出现的次数 题解: ...
随机推荐
- 258. Add Digits 数位相加到只剩一位数
[抄题]: Given a non-negative integer num, repeatedly add all its digits until the result has only one ...
- 383. Ransom Note 在字典数组中查找笔记数组
[抄题]: Given an arbitrary ransom note string and another string containing letters from all the magaz ...
- 4-fiddler抓包中文乱码:
接受到的html被压缩了,要解压,在工具栏有decode
- c# 获取客户端ip、mac、机器名、操作系统、浏览器信息
d using System; using System.Collections.Generic; using System.Linq; using System.Web; using System. ...
- suse10配置SSH无密码登录的方法
RSH配置(集群中的每台机器执行以下操作) 1.因SUSE LINUX不自带RSH-SERVER服务,所以首先要去从www.rpmfind.net 下载rsh-server服务的RPM包. 然后切换到 ...
- CF547D Mike and Fish
欧拉回路,巧妙的解法. 发现每一个点$(x, y)$实际上是把横坐标和$x$和纵坐标$y$连一条线,然后代进去跑欧拉回路,这样里一条边对应了一个点,我们只要按照欧拉回路间隔染色即可. 注意到原图可能并 ...
- Redis主从服务部署
Redis__WindowsServer主从服务部署及调用实例 一.先谈谈单个Redis服务的安装 使用的redis是2.8.17版本,从官网下载解压缩后文件内容为: ...
- Head First HTML与CSS、XHTML (中文版).(Elisabeth Freeman) PDF扫描版
面对那些晦涩的html书你不禁要问:“难道要成为专家之后才能读懂这些?”那么,你应该选择<head first html与css.xhtml(中文版)>真正来学习html.这本书对你来说, ...
- 中国城市 json
点击查看完整代码,再点击复制即可复制代码. 三级json,省市区: [{ "value": "110000", "text": " ...
- super() 的入门使用
在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能,这时,我们就需要调用父类的方法了,可通过使用 super 来实现,比如: 1 2 3 4 5 ...