题目大意:
  给定一个长度为$2n-1(n\le50)$的数组$a$,可以重排$a$中的元素,生成一个长度为$n$的数组$b$,其中$b_i$为$a_1\sim a_{2i-1}$的中位数。求对于给定的$a$能生成多少种不同的$b$。

思路:
  对$a$进行排序,转化题意。求满足以下3个条件的长度为$n$的数列$b$的个数:
  1.$b_i\in\{a_i,a_{i+1},\ldots,a_{2n-i}\}$;
  2.对于$(i<j)$,不存在$b_i<b_j<b_{i+1}$;
  3.对于$(i<j)$,不存在$b_i>b_j>b_{i+1}$。
  用$f[i][j][k]$表示考虑$b$的第$i$位,比它小的可选数有$j$种,比它大的可选数有$k$种。即可用动态规划求得。
  每次转移设$l=[a_i\ne a_{i-1}],r=[a_{m-i+1}\ne a_{m-i+2}]$,对应条件1,表示当前转移可以新填的数。若$a_i=a_{i-1}$或$a_{m-i+1}=a_{m-i+2}$则说明不会增加新填的数。
  转移1:$f[i-1][j+l][k+r]+=f[i][j][k]$,即当前填的数还是上次的数,但是两边各多出$l$或$r$个可以填。
  转移2:$f[i-1][t][k+r+1]+=f[i][j][k](t<j+l)$,表示若将当前填的数变小,左边还剩$t$个可以填,这里本来填的变成了右边的。
  转移3:$f[i-1][j+l+1][t]+=f[i][j][k](t<k+r)$,表示若将当前填的数变大,右边还剩$t$个可以填,这里本来填的变成了左边的。
  状态$O(n^3)$,转移$O(n)$,时间复杂度$O(n^4)$。

 #include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
constexpr int mod=1e9+;
constexpr int N=,M=;
int a[N],f[N][M][M];
int main() {
const int n=getint(),m=n*-;
for(register int i=;i<=m;i++) a[i]=getint();
std::sort(&a[],&a[m]+);
f[n][][]=;
for(register int i=n;i>;i--) {
const bool l=a[i]!=a[i-],r=a[m-i+]!=a[m-i+];
for(register int j=;j<=m;j++) {
for(register int k=;k<=m;k++) {
if(!f[i][j][k]) continue;
(f[i-][j+l][k+r]+=f[i][j][k])%=mod;
for(register int t=;t<j+l;t++) {
(f[i-][t][k+r+]+=f[i][j][k])%=mod;
}
for(register int t=;t<k+r;t++) {
(f[i-][j+l+][t]+=f[i][j][k])%=mod;
}
}
}
}
int ans=;
for(register int i=;i<=m;i++) {
for(register int j=;j<=m;j++) {
(ans+=f[][i][j])%=mod;
}
}
printf("%d\n",ans);
return ;
}

[AGC012F]Prefix Median的更多相关文章

  1. 【AtCoder】【DP】【思维】Prefix Median(AGC012)

    模的是这位神犇的代码:Atcoder AGC012F : Prefix Median 题意: 在动态中位数那道题上做了一些改动.给你一个序列a,可以将a重新任意排序,然后对于a序列构造出b序列. 假设 ...

  2. Solution -「AGC 012F」「AT 2366」Prefix Median

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_{2n-1}\}\),将 \(\{a_{2n-1}\}\) 按任意顺序排列后,令序列 \(b_i\) 为前 ...

  3. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  4. 【AtCoder】AGC012

    AGC012 A - AtCoder Group Contest 从最后开始间隔着取就行 #include <bits/stdc++.h> #define fi first #define ...

  5. A♂G&C012

    A♂G&C012 A AtCoder Group Contest 从大到小sort后输出\(a_2+a_4+a_6+\ldots a_{2n}\) 好♂啊,只会背结论/kk B Splatte ...

  6. AtCoder练习

    1. 3721 Smuggling Marbles 大意: 给定$n+1$节点树, $0$为根节点, 初始在一些节点放一个石子, 然后按顺序进行如下操作. 若$0$节点有石子, 则移入盒子 所有石子移 ...

  7. Spring配置文件标签报错:The prefix "XXX" for element "XXX:XXX" is not bound. .

    例如:The prefix "context" for element "context:annotation-config" is not bound. 这种 ...

  8. No.004:Median of Two Sorted Arrays

    问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...

  9. [LeetCode] Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

随机推荐

  1. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  2. cloudera manager 5.3完整卸载脚本

    service cloudera-scm-agent stop service cloudera-scm-agent stop umount /var/run/cloudera-scm-agent/p ...

  3. java摘要

    **idea 注册 Licensed to ilanyu License Server: http://idea.iteblog.com/key.php 1.文件上传下载 http://blog.cs ...

  4. wget命令下载FTP整个目录进行文件备份

    使用wget下载整个FTP目录,可以用于服务器间文件传输,进行远程备份.通过限制网速,可以解决带宽限制问题. #wget ftp://IP:PORT/* --ftp-user=xxx --ftp-pa ...

  5. 五分钟搞懂Vuex

    这段时间一直在用vue写项目,vuex在项目中也会依葫芦画瓢使用,但是总有一种朦朦胧胧的感觉.于是决定彻底搞懂它. 看了一下午的官方文档,以及资料,才发现vuex so easy! 作为一个圈子中的人 ...

  6. vue 数组、对象 深度拷贝和赋值

    由于此对象的引用类型指向的都是一个地址(除了基本类型跟null,对象之间的赋值,只是将地址指向同一个,而不是真正意义上的拷贝) 数组: let a = [11,22,33]; let b = a; / ...

  7. Linux下Tomcat开机自动启动

    linux下tomcat开机自动启动有两种方法,一种是简单,一种是复杂而又专业的,使用shell脚本要实现,我们一般推荐shell脚本启动方式.下面我们分别介绍这两种方法. 1.shell脚本启动 众 ...

  8. gcc升级方法

    https://www.cppfans.org/1719.html 默认链接到 /usr/local/bin/gcc,需要链接一下,替换默认的低版本 ln -s /usr/local/bin/gcc ...

  9. [ Python - 3 ] python3.5中不同的读写模式

    r 只能读.r+可读可写,不会创建不存在的文件.如果直接写文件,则从顶部开始写,覆盖之前此位置的内容,如果先读后写,则会在文件最后追加内容.w+ 可读可写 如果文件存在 则覆盖整个文件不存在则创建w ...

  10. 【SQL】全关系操作

    1.消除重复 - DISTINCT SQL语句中默认的是,重复的元祖可以多次的显示.如果希望消除重复,需要DISTINCT关键字. 注:消除重复需要排序,所以代价高.在需要高效率时要谨慎. SELEC ...