题意:给一个$n\times m$的网格,初始时有些地方不能选,给$k$个询问$(x,y)$,每次令$(x,y)$不能选,然后询问最大子正方形的边长

如果按原题来做,禁止选一个点对答案的影响是极其鬼畜的,不方便统计,所以我们离线倒序处理,先让所有询问的点不能选,然后反过来逐次让某些点可选,这样答案是不减的,而且更优的答案一定包含此次选的点

预处理出$up_{i,j}$表示$(i,j)$往上走最远可到的'.',$down_{i,j}$表示$(i,j)$往下走最远可到的'.'

于是对于某行,我们可以扫一遍求出所有跨越此行的正方形的最大边长

假设当前处理到此行的$[l,r]$,已经求得区间中$up$和$down$的最值

①若区间包含'X'或$\left|up-down\right|\lt r-l$,左端点++

②否则更新答案并右端点++

右端点移动时直接$O(1)$更新最值

左端点移动时用线段树$O(log_2n)$更新最值

整个过程是$O(nlog_2n)$的

所以每次加入一个可选点时,暴力更新这一列的$up,down$,统计这一行的答案并更新

需要访问单点值,所以用ZKW线段树又快又方便

#include<stdio.h>
#define inf 2147483647
char s[2010][2010];
int x[2010],y[2010],up[2010][8010],ans[2010],down[2010][8010],M,m;
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
void pu(int id,int x){
	up[id][x]=max(up[id][x<<1],up[id][x<<1|1]);
}
void pd(int id,int x){
	down[id][x]=min(down[id][x<<1],down[id][x<<1|1]);
}
int queryu(int id,int s,int t){
	int c=-inf;
	for(s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
		if(~s&1)c=max(c,up[id][s^1]);
		if(t&1)c=max(c,up[id][t^1]);
	}
	return c;
}
void modifyu(int id,int p,int v){
	p+=M;
	for(up[id][p]=v;p>>=1;)pu(id,p);
}
int queryd(int id,int s,int t){
	int c=inf;
	for(s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
		if(~s&1)c=min(c,down[id][s^1]);
		if(t&1)c=min(c,down[id][t^1]);
	}
	return c;
}
void modifyd(int id,int p,int v){
	p+=M;
	for(down[id][p]=v;p>>=1;)pd(id,p);
}
int getline(int x){
	int l,r,maxy,miny,res;
	res=0;
	for(l=r=1;l<=m;l++){
		if(l>r){
			r++;
			l--;
			continue;
		}
		maxy=queryu(x,l,r);
		miny=queryd(x,l,r);
		while(maxy!=inf&&miny!=-inf&&miny-maxy>=r-l&&r<m){
			res=max(res,r-l+1);
			r++;
			maxy=max(maxy,up[x][r+M]);
			miny=min(miny,down[x][r+M]);
		}
		if(r==m){
			if(maxy!=inf&&miny!=-inf&&miny-maxy>=r-l)res=max(res,r-l+1);
			break;
		}
	}
	return res;
}
int main(){
	int n,q,i,j;
	scanf("%d%d%d",&n,&m,&q);
	for(M=1;M<m+1;M<<=1);
	for(i=1;i<=n;i++)scanf("%s",s[i]+1);
	for(i=1;i<=q;i++){
		scanf("%d%d",x+i,y+i);
		s[x[i]][y[i]]='X';
	}
	for(i=1;i<=m;i++)s[0][i]=s[n+1][i]='X';
	for(i=1;i<=n;i++){
		for(j=1;j<=m;j++){
			if(s[i][j]!='X'){
				if(s[i-1][j]=='X')
					up[i][j+M]=i;
				else
					up[i][j+M]=up[i-1][j+M];
			}else
				up[i][j+M]=inf;
		}
	}
	for(i=n;i>0;i--){
		for(j=1;j<=m;j++){
			if(s[i][j]!='X'){
				if(s[i+1][j]=='X')
					down[i][j+M]=i;
				else
					down[i][j+M]=down[i+1][j+M];
			}else
				down[i][j+M]=-inf;
		}
	}
	for(i=1;i<=n;i++){
		for(j=M-1;j>0;j--){
			pd(i,j);
			pu(i,j);
		}
	}
	ans[q]=0;
	for(i=1;i<=n;i++)ans[q]=max(ans[q],getline(i));
	for(i=q;i>1;i--){
		s[x[i]][y[i]]='.';
		for(j=x[i];j<=n;j++){
			if(s[j][y[i]]!='X'){
				if(s[j-1][y[i]]=='X')
					modifyu(j,y[i],j);
				else
					modifyu(j,y[i],up[j-1][y[i]+M]);
			}
		}
		for(j=x[i];j>0;j--){
			if(s[j][y[i]]!='X'){
				if(s[j+1][y[i]]=='X')
					modifyd(j,y[i],j);
				else
					modifyd(j,y[i],down[j+1][y[i]+M]);
			}
		}
		ans[i-1]=max(ans[i],getline(x[i]));
	}
	for(i=1;i<=q;i++)printf("%d\n",ans[i]);
}

[CF480E]Parking Lot的更多相关文章

  1. CF480E Parking Lot(单调队列+dp然鹅并不是优化)

    (全英文题面所以直接放化简题意) 题意:在一个二维平面内,初始有一些点,然后每个时间点加入一些点,对每个时间点求平面内最大的无障碍正方形 (这次的题目是真的神仙啊...) 首先,考虑暴力,如果对每一个 ...

  2. CF480E Parking Lot(two-pointers + 单调队列优化)

    题面 动态加障碍物,同时查询最大子正方形. n,m≤2000n,m\leq2000n,m≤2000 题解 加障碍不好做,直接离线后反着做,每次就是清除一个障碍物. 显然倒着做答案是递增的,而且答案的值 ...

  3. 并不对劲的CF480E:Parking Lot

    题目大意 有一个\(n\times m\)的网格,每个位置是黑色或者白色.\(k\)个操作,每个操作是将一个白格子染黑,操作后输出当前最大的白色正方形的边长.\(n,m,k\leq 2\times 1 ...

  4. [LintCode] Parking Lot 停车场问题

    Design a parking lot. see CC150 OO Design for details.1) n levels, each level has m rows of spots an ...

  5. [CareerCup] 8.4 Parking Lot 停车场问题

    8.4 Design a parking lot using object-oriented principles. LintCode上的原题,请参见我的另一篇博客Parking Lot 停车场问题. ...

  6. Codeforces 46D Parking Lot

    传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并

    E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Amazon Interview Question: Design an OO parking lot

    Design an OO parking lot. What classes and functions will it have. It should say, full, empty and al ...

  9. HDOJ(HDU) 1673 Optimal Parking

    Problem Description When shopping on Long Street, Michael usually parks his car at some random locat ...

随机推荐

  1. Could not resolve com.android.support:multidex:1.0.2

    http://blog.csdn.net/goodlixueyong/article/details/50992835

  2. egrep对于conf文件中去掉#注释,排除无用项

    [root@localhost conf]# egrep -v "#|^$" nginx.conf.default > nginx.conf dd

  3. ansible 批量修改root密码

    [root@sz_fy_virt_encrypt_33_239 fetch]# cat /opt/passwd.yml - hosts: web vars: path: /home/opsadmin ...

  4. DIV的变高与变宽

    代码: <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title&g ...

  5. 问题总结——window平台下grunt\bower安装后无法运行的问题

    一.问题: 安装grunt或者bower后,在cmd控制台运行grunt -version 或者 bower -v会出现:“xxx不是内部或外部命令,也不是可运行的程序或批处理文件”,

  6. es6+最佳入门实践(5)

    5.对象扩展 5.1.对象简写 在es5中,有这样一种写法 var name = "xiaoqiang"; var age = 12; var obj = { name : nam ...

  7. 在Idea中使用Eclipse编译器

    Eclipse编译器对Javac编译器的优点如下: 1.Proceed on errors 如果使用Javac编译器,你除了在执行之前修复所有错误之外没有其它的选择.然而Eclipse编译器却可以不管 ...

  8. [bzoj3524==bzoj2223][Poi2014]Couriers/[Coci 2009]PATULJCI——主席树+权值线段树

    题目大意 给定一个大小为n,每个数的大小均在[1,c]之间的数列,你需要回答m个询问,其中第i个询问形如\((l_i, r_i)\),你需要回答是否存在一个数使得它在区间\([l_i,r_i]\)中出 ...

  9. bzoj 3208 暴力

    对于每个操作,直接暴力做就行了,询问的话搜一遍,然后 就这么水过去了. /************************************************************** ...

  10. Golang使用amqp发送消息

    1.为什么使用信道(channel)而不使用TCP连接发送AMQP命令? 对操作系统来说频繁的建立和销毁TCP连接开销非常昂贵,而操作系统每秒建立的连接是有上限的,性能瓶颈不可避免,而只建立一条TCP ...