P4462 [CQOI2018]异或序列
题目描述
已知一个长度为n的整数数列 a1,a2,...,ana_1,a_2,...,a_na1,a2,...,an ,给定查询参数l、r,问在 al,al+1,...,ara_l,a_{l+1},...,a_ral,al+1,...,ar 区间内,有多少子序列满足异或和等于k。也就是说,对于所有的x,y (I ≤ x ≤ y ≤ r),能够满足 ax⨁ax+1⨁...⨁ay=ka_x \bigoplus a_{x+1} \bigoplus ... \bigoplus a_y = kax⨁ax+1⨁...⨁ay=k 的x,y有多少组。
输入输出格式
输入格式:
输入文件第一行,为3个整数n,m,k。
第二行为空格分开的n个整数,即 a1,a2,..ana_1,a_2,..a_na1,a2,..an 。
接下来m行,每行两个整数 lj,rjl_j,r_jlj,rj ,表示一次查询。
输出格式:
输出文件共m行,对应每个查询的计算结果。
输入输出样例
4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4
4
2
1
2
1
说明
对于30%的数据, 1≤n,m≤10001 ≤ n, m ≤ 10001≤n,m≤1000
对于100%的数据, 1≤n,m≤105,0≤k,ai≤105,1≤lj≤rj≤n
Solution:
这题面有毒,我不改了,题意就是$10^5$个数,$10^5$次查询,每次询问区间$[l,r]$中的子序列异或和为$k$的值的个数。
首先,很容易想到异或的性质$a\;xor\;b\;xor\;b=a$,所以用前缀异或和$a[i]$表示前$i$个数的异或和,那么子序列$p_x\;xor\;p_{x+1}…\;xor\;p_{y-1}\;xor\;p_{y}=a_y\;xor\;a_{x-1}$。
若$a_{x-1}\;xor\;a_y=k$,则$a_{x-1}=a_y\;xor\;k$,于是本题预处理出前缀异或和,将每个区间的下界$l-1$(因为$[l,r]$的异或和为$a[r]\;xor\;a[l-1]$),加减一个数等同于修改并统计当前区间$a_p\;xor\;k$出现的个数,于是本题就成了一道莫队模板题——查询区间中某个数的个数。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=;
int n,m,k,a[N],pos[N],ans[N],num[N*],tot;
struct data{
int l,r,id;
}t[N];
il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il bool cmp(data a,data b){return pos[a.l]==pos[b.l]?a.r<b.r:a.l<b.l;}
il void add(int p){tot+=num[k^a[p]],++num[a[p]];}
il void del(int p){--num[a[p]],tot-=num[k^a[p]];}
int main()
{
n=gi(),m=gi(),k=gi();
int s=int(sqrt(n));
for(int i=;i<=n;i++)pos[i]=(i-)/s+,a[i]=a[i-]^gi();
for(int i=;i<=m;i++)t[i].l=gi()-,t[i].r=gi(),t[i].id=i;
sort(t+,t+m+,cmp);
for(int i=,l=,r=;i<=m;i++){
while(t[i].l>l)del(l++);
while(t[i].l<l)add(--l);
while(t[i].r<r)del(r--);
while(t[i].r>r)add(++r);
ans[t[i].id]=tot;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}
P4462 [CQOI2018]异或序列的更多相关文章
- 【luogu P4462 [CQOI2018]异或序列】 题解
题目链接:https://www.luogu.org/problemnew/show/P4462 ax+ax-1+...+ay = cntx+cnty 这样把一段序列变成两段相加跑莫队. #inclu ...
- 并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列
题目大意 给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\ ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- Luogu P4462 [CQOI2018]异或序列
一道稍微要点脑子的莫队题,原来省选也会搬CF原题 首先利用\(xor\)的性质,我们可以搞一个异或前缀和的东西 每一次插入一个数,考虑它和之前已经加入的数能产生多少贡献 记一下之前的异或总值,然后还是 ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
打广告->[这里](https://www.cnblogs.com/bztMinamoto/p/9538115.html) 我蠢了…… 如果$a_{l} xor ...a_{r}=k$,那么只要 ...
- luogu P4462 [CQOI2018]异或序列 |莫队
题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...
- P4462 [CQOI2018]异或序列 莫队
题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
随机推荐
- Struts2拦截器说明
有关于Struts2的拦截器的原理 在此共设置了两个拦截器,firstInterception.SecondInterception package struts2_inteception; publ ...
- PHP 面向对象编程笔记 (麦子 php 第二阶段)
类是把具有相似特性的对象归纳到一个类中,类就是一组相同属性和行为的对象的集合.类和对象的关系:类是相似对象的描述,先有类,再有对象.类是对象的抽象,对象是类的实例.通过class关键字创建类,成员属性 ...
- 记一次MD5妙用
记一次MD5妙用 最近项目组中在做历史记录的改造工作,主持讨论了多次,但每次讨论完都觉的很完美了,但实际在写这部分逻辑的时候还是会发现一些问题出来,很难受,反反复复的暴露智商是硬伤,人艰不拆,暂先不扯 ...
- MongoDB从环境搭建到代码编程(Window 环境)
本人开发环境: window Server 2008 , 64位系统 服务端 MongoDB下载地址:http://www.mongodb.org/downloads (本人己下好的在百度网盘 : ...
- Sql Server 游标概念与实例
引言 先不讲游标的什么概念,看如下Sql Server2008 图例: 需求:两张表的O_ID是一一对应的,现在求将加薪的工资+原来的工资=现在的工资,也就是O_Salary=O_Salary+A_S ...
- hdu畅通工程(并查集)
Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道 ...
- struts2官方 中文教程 系列十一:使用XML进行表单验证
在本教程中,我们将讨论如何使用Struts 2的XML验证方法来验证表单字段中用户的输入.在前面的教程中,我们讨论了在Action类中使用validate方法验证用户的输入.使用单独的XML验证文件让 ...
- struts2官方 中文教程 系列六:表单验证
先贴个本帖的地址,以免被爬:struts2教程 官方系列六:表单验证 即 http://www.cnblogs.com/linghaoxinpian/p/6906720.html 下载本章节代码 介 ...
- 当我们访问不了虚拟机上ip上的web页面,是因为在window上要添加映射
在主机上添加映射步骤 1.打开C盘 注意:用nopedata++打开 保存即可!
- 台湾ML笔记--1.2 formalize the learning probelm
Basic notations input: x∈χ (customer application) output: y∈y (good/bad after approving cred ...