传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1045

Fire Net

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14670    Accepted Submission(s): 8861

Problem Description
Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, each representing a street or a piece of wall.

A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.

Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.

 
Input
The input file contains one or more map descriptions, followed by a line containing the number 0 that signals the end of the file. Each map description begins with a line containing a positive integer n that is the size of the city; n will be at most 4. The next n lines each describe one row of the map, with a '.' indicating an open space and an uppercase 'X' indicating a wall. There are no spaces in the input file.
 
Output
For each test case, output one line containing the maximum number of blockhouses that can be placed in the city in a legal configuration.
 
Sample Input
4
.X..
....
XX..
....
2
XX
.X
3
.X.
X.X
.X.
3
...
.XX
.XX
4
....
....
....
....
0
 
Sample Output
5
1
5
2
4
 
Source
 
题目意思:

就是给你一个地图,地图上有一些墙,向地图内放炮台,不要让两个炮台能互相射击到对方,

当然中间有墙就可以阻隔他们。求最多能放多少炮台。

分析:

如果放炮台,在该点设置一个炮台标记,

判断某一点是否可以放炮台,就是从该点向四个方向找,碰到墙停止,碰到别的炮台就返回0,表示该点不能放炮台。

code:

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
using namespace std;
char G[][];
int n,sum;
bool check(int x,int y)
{
if(G[x][y]=='X')//该点是墙
return false;
for(int i=x;i<n;i++)//下
{
if(G[i][y]=='X')
break;
if(G[i][y]=='S')
return false;
}
for(int i=x;i>=;i--)//上
{
if(G[i][y]=='X')
break;
if(G[i][y]=='S')
return false;
}
for(int j=y;j<n;j++)//右
{
if(G[x][j]=='X')
break;
if(G[x][j]=='S')
return false;
}
for(int j=y;j>=;j--)//左
{
if(G[x][j]=='X')
break;
if(G[x][j]=='S')
return false;
}
return true;
} void dfs(int x,int y,int num)
{
if(x==n)
{
sum=max(sum,num);
return ;
}
for(int j=y;j<n;j++)
{
if(check(x,j))
{
G[x][j]='S';
dfs(x,j,num+);
G[x][j]='.';
}
}
dfs(x+,,num);
}
int main()
{
while(cin>>n,n)
{
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
cin>>G[i][j];
}
}
sum=;
dfs(,,);
cout<<sum<<endl;
}
return ;
}

HDU 1045 Fire Net(dfs,跟8皇后问题很相似)的更多相关文章

  1. HDOJ(HDU).1045 Fire Net (DFS)

    HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...

  2. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  3. HDU 1045 Fire Net(DFS)

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

  4. hdu 1045 Fire Net(最小覆盖点+构图(缩点))

    http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit:1000MS     Memory Limit:32768KB   ...

  5. HDU 1045(Fire Net)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定大小的棋盘中部分格子存在可以阻止互相攻击的墙,问棋盘中可以放置最多多少个可以横纵攻击炮塔. [题目分析] 这题本来在搜索专题 ...

  6. HDU 1045——Fire Net——————【最大匹配、构图、邻接矩阵做法】

    Fire Net Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  7. HDU 1045 Fire Net 【连通块的压缩 二分图匹配】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)    ...

  8. HDU 1045 Fire Net 状压暴力

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)  ...

  9. HDU 1045 Fire Net 二分图建图

    HDU 1045 题意: 在一个n*n地图中,有许多可以挡住子弹的墙,问最多可以放几个炮台,使得炮台不会相互损害.炮台会向四面发射子弹. 思路: 把行列分开做,先处理行,把同一行中相互联通的点缩成一个 ...

随机推荐

  1. BSON入门

    1.概念BSON(Binary Serialized Document Format)是一种类json的一种二进制形式的存储格式,简称Binary JSON,它和JSON一样,支持内嵌的文档对象和数组 ...

  2. Prometheus TSDB分析

    Prometheus TSDB分析 概述 Prometheus是著名开源监控项目,其监控任务调度给具体的服务器,该服务器到目标上抓取监控数据,然后保存在本地的TSDB中.自定义强大的PromQL语言查 ...

  3. 图像文字识别(OCR)用什么算法小结

    说明:主要考虑深度学习的方法,传统的方法不在考虑范围之内. 1.文字识别步骤 1.1detection:找到有文字的区域(proposal). 1.2classification:识别区域中的文字. ...

  4. 通过js操作样式(评分)

    <style> td{ font-size:50px; color:yellow; cursor:pointer; } </style> <script type=&qu ...

  5. 【学习笔记】关于DOM4J:使用DOM4J解析XML文档

    一.概述 DOM4J是一个易用的.开源的库,用于XML.XPath和XSLT中.采用了Java集合框架并完全支持DOM.SAX.和JAXP. DOM4J最大的特色是使用大量的接口,主要接口都在org. ...

  6. ssh整合(spring + struts2 + hibernate)xml版

    1.1分层 1.2jar节点 <dependencies> <dependency> <groupId>junit</groupId> <arti ...

  7. 前端之CSS——盒子模型和浮动

    一.CSS盒子模型 HTML文档中的每个元素都被描绘成矩形盒子,这些矩形盒子通过一个模型来描述其占用空间,这个模型称为盒子模型. 盒子模型通过四个边界来描述:margin(外边距),border(边框 ...

  8. CentOS 7 学习笔记

    Centos7 命令行   快捷键: 上方向键, 查看上一条命令 Ctrl+C 强制终止程序运行   新版 nmtui 配置网络 旧版 setup(已经没了)   网络接口   ip a = ip a ...

  9. 利用函数回调获取setInterval中返回的值

    我们都知道,定时器里面想返回值如果你用return根本没作用,那么怎么拿到定时器所返回的值呢, 现在只需要利用回调函数,给主函数传一个函数类型的参数callback,然后把想要返回的num再传给cal ...

  10. Highcharts - Bar Chart & Column Chart

    1. 条形图(Bar Chart)需要的数据格式类型如下: ["Luke Skywalker", "Darth Vader", "Yoda" ...