VARIABLES, RECORDS AND FIELDS
AWK variables are dynamic; they come into existence when they are first used. Their values are either floating-point numbers or strings, or both, depending upon how they are used. AWK also has one dimensional arrays; arrays with multiple dimensions may be simulated. Several pre-defined variables are set as a program runs; these are described as needed and summarized below.
awk的变量不需要声明,第一次使用时就定义了。数据类型是弱类型,支持 数字,浮点数,字符串。也支持一维数组。自定义的变量后面再介绍。
Records
Normally, records are separated by newline characters. You can control how records are separated by assigning values to the built-in variable RS. If RS is any single character, that character separates records. Otherwise, RS is a regular expression. Text in the input that matches this regular expression separates the record. However, in compatibility mode, only the first character of its string value is used for separating records. If RS is set to the null string, then records are separated by blank lines. When RS is set to the null string, the newline character always acts as a field separator, in addition to whatever value FS may have.
awk 是面向行的语言。每一行输入被称为一个record。RS是控制record分隔的,默认RS是 换行符。如果RS不是单个字符作为分隔符,那么就是一个正则表达式,即该正则表达式作为分隔符。在兼容模式,字符串的第一个字符才作为行分隔符。如果RS为NULL,空白行作为行分隔符;另外无论FS的值是什么,换行符总是作为域分隔符。
Fields
As each input record is read, gawk splits the record into fields, using the value of the FS variable as the field separator. If FS is a single character, fields are separated by that character. If FS is the null string, then each individual character becomes a separate field. Otherwise, FS is expected to be a full regular expression. In the special case that FS is a single space, fields are separated by runs of spaces and/or tabs and/or newlines. (But see the section POSIX COMPATIBILITY, below). NOTE: The value of IGNORECASE (see below) also affects how fields are split when FS is a regular expression, and how records are separated when RS is a regular expression.
If the FIELDWIDTHS variable is set to a space separated list of numbers, each field is expected to have fixed width, and gawk splits up the record using the specified widths. The value of FS is ignored. Assigning a new value to FS or FPAT overrides the use of FIELDWIDTHS.
Similarly, if the FPAT variable is set to a string representing a regular expression, each field is made up of text that matches that regular expression. In this case, the regular expression describes the fields themselves, instead of the text that separates the fields. Assigning a new value to FS or FIELDWIDTHS overrides the use of FPAT.
Each field in the input record may be referenced by its position, $1, $2, and so on. $0 is the whole record. Fields need not be referenced by constants:
n = 5
print $n
prints the fifth field in the input record.
The variable NF is set to the total number of fields in the input record.
References to non-existent fields (i.e. fields after $NF) produce the null-string. However, assigning to a non-existent field (e.g., $(NF+2) = 5) increases the value of NF, creates any intervening fields with the null string as their value, and causes the value of $0 to be recomputed, with the fields being separated by the value of OFS. References to negative numbered fields cause a fatal error. Decrementing NF causes the values of fields past the new value to be lost, and the value of $0 to be recomputed, with the fields being separated by the value of OFS.
Assigning a value to an existing field causes the whole record to be rebuilt when $0 is referenced. Similarly, assigning a value to $0 causes the record to be resplit, creating new values for the fields.
awk 将每一行(record) 通过域分隔符(FS) 将这个行(record)分为多个部分。如果FS是单个字符,那么就用该字符作为域分隔符。如果FS是空串,那么每一个字符都作为一个域。如果FS是一个空格,那么空格 和/或 tabs 和/或换行符 作为域分隔符。
每一个record中的域通过$1,$2,...来引用。$0表示整行。
Built-in Variables
Gawk's built-in variables are:
ARGC The number of command line arguments (does not include options to gawk, or the program source).
ARGIND The index in ARGV of the current file being processed.
ARGV Array of command line arguments. The array is indexed from 0 to ARGC - 1. Dynamically changing the contents of ARGV can control the files used for data.
BINMODE On non-POSIX systems, specifies use of “binary” mode for all file I/O. Numeric values of 1, 2, or 3, specify that input files, output files, or all files, respectively, should use binary I/O. String values of "r", or "w" specify that input files, or output files, respectively, should use binary I/O. String values of "rw" or "wr" specify that all files should use binary I/O. Any other string value is treated as "rw", but generates a warning message.
CONVFMT The conversion format for numbers, "%.6g", by default.
ENVIRON An array containing the values of the current environment. The array is indexed by the environment variables, each element being the value of that variable (e.g., ENVIRON["HOME"] might be /home/arnold). Changing this array does not affect the environment seen by programs which gawk spawns via redirection or the system() function.
ERRNO If a system error occurs either doing a redirection for getline, during a read for getline, or during a close(), then ERRNO will contain a string describing the error. The value is subject to translation in non-English locales.
FIELDWIDTHS A whitespace separated list of field widths. When set, gawk parses the input into fields of fixed width, instead of using the value of the FS variable as the field separator. See Fields, above.
FILENAME The name of the current input file. If no files are specified on the command line, the value of FILENAME is “-”. However, FILENAME is undefined inside the BEGIN block (unless set by getline).
FNR The input record number in the current input file.---可获取文件的行数
FPAT A regular expression describing the contents of the fields in a record. When set, gawk parses the input into fields, where the fields match the regular expression, instead of using the value of the FS variable as the field separator. See Fields, above.
FS The input field separator, a space by default. See Fields, above.
IGNORECASE Controls the case-sensitivity of all regular expression and string operations. If IGNORECASE has a non-zero value, then string comparisons and pattern matching in rules, field splitting with FS and FPAT, record separating with RS, regular expression matching with ~ and !~, and the gensub(), gsub(), index(), match(), patsplit(), split(), and sub() built-in functions all ignore case when doing regular expression operations. NOTE: Array subscripting is not affected. However, the asort() and asorti() functions are affected. Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings "ab", "aB", "Ab", and "AB". As with all AWK variables, the initial value of IGNORECASE is zero, so all regular expression and string operations are normally case-sensitive.
LINT Provides dynamic control of the --lint option from within an AWK program. When true, gawk prints lint warnings. When false, it does not. When assigned the string value "fatal", lint warnings become fatal errors, exactly like --lint=fatal. Any other true value just prints warnings.
NF The number of fields in the current input record.---可获取每一行的字段(field)数
NR The total number of input records seen so far.
OFMT The output format for numbers, "%.6g", by default.
OFS The output field separator, a space by default.
ORS The output record separator, by default a newline.
PROCINFO The elements of this array provide access to information about the running AWK program. On some systems, there may be elements in the array, "group1" through "groupn" for some n, which is the number of supplementary groups that the process has. Use the in operator to test for these elements. The following elements are guaranteed to be available:
PROCINFO["egid"] the value of the getegid(2) system call.
PROCINFO["strftime"]
The default time format string for strftime().
PROCINFO["euid"] the value of the geteuid(2) system call.
PROCINFO["FS"] "FS" if field splitting with FS is in effect, "FPAT" if field splitting with FPAT is in effect, or "FIELDWIDTHS" if field splitting with FIELDWIDTHS is in effect.
PROCINFO["gid"] the value of the getgid(2) system call.
PROCINFO["pgrpid"] the process group ID of the current process.
PROCINFO["pid"] the process ID of the current process.
PROCINFO["ppid"] the parent process ID of the current process.
PROCINFO["uid"] the value of the getuid(2) system call.
PROCINFO["sorted_in"]
If this element exists in PROCINFO, then its value controls the order in which array elements are traversed in for loops. Supported values are "@ind_str_asc", "@ind_num_asc", "@val_type_asc", "@val_str_asc", "@val_num_asc", "@ind_str_desc", "@ind_num_desc", "@val_type_desc", "@val_str_desc", "@val_num_desc", and "@unsorted". The value can also be the name of any comparison function defined as follows: function cmp_func(i1, v1, i2, v2)
where i1 and i2 are the indices, and v1 and v2 are the corresponding values of the two elements being compared. It should return a number less than, equal to, or greater than 0, depending on how the elements of the array are to be ordered.
PROCINFO["version"]
the version of gawk.
RS The input record separator, by default a newline.
RT The record terminator. Gawk sets RT to the input text that matched the character or regular expression specified by RS.
RSTART The index of the first character matched by match(); 0 if no match. (This implies that character indices start at one.)
RLENGTH The length of the string matched by match(); -1 if no match.
SUBSEP The character used to separate multiple subscripts in array elements, by default "\034".
TEXTDOMAIN The text domain of the AWK program; used to find the localized translations for the program's strings.
Arrays are subscripted with an expression between square brackets ([ and ]). If the expression is an expression list (expr, expr ...) then the array subscript is a string consisting of the concatenation of the (string) value of each expression, separated by the value of the SUBSEP variable. This facility is used to simulate multiply dimensioned arrays. For example:
i = "A"; j = "B"; k = "C"
x[i, j, k] = "hello, world\n"
assigns the string "hello, world\n" to the element of the array x which is indexed by the string "A\034B\034C". All arrays in AWK are associative, i.e. indexed by string values.
The special operator in may be used to test if an array has an index consisting of a particular value:
if (val in array)
print array[val]
If the array has multiple subscripts, use (i, j) in array.
The in construct may also be used in a for loop to iterate over all the elements of an array.
An element may be deleted from an array using the delete statement. The delete statement may also be used to delete the entire contents of an array, just by specifying the array name without a subscript.
gawk supports true multidimensional arrays. It does not require that such arrays be ``rectangular'' as in C or C++. For example:
a[1] = 5
a[2][1] = 6
a[2][2] = 7
数组是通过一个表达式进行索引,而这个表达式放在一对方括号中。如果该表达式是一个表达式列表(expr,expr ...),那么这个数组的每一个索引是 每一个expr通过SUBSEP连接起来的整个expression.因为awk只支持一维数组,那么如果数组索引是一个表达式,那么就是一维数组;如果数组索引是 表达式列表,那么就可以模拟多维数组。通常C语言中数组的索引是数字,所以从C的角度去考虑就会不好理解。但是如果从 key-value 数组的形式去考虑,例如 php,就很好理解awk的数组了。
Variable Typing And Conversion
Variables and fields may be (floating point) numbers, or strings, or both. How the value of a variable is interpreted depends upon its context. If used in a numeric expression, it will be treated as a number; if used as a string it will be treated as a string.
To force a variable to be treated as a number, add 0 to it; to force it to be treated as a string, concatenate it with the null string.
When a string must be converted to a number, the conversion is accomplished using strtod(3). A number is converted to a string by using the value of CONVFMT as a format string for sprintf(3), with the numeric value of the variable as the argument. However, even though all numbers in AWK are floating-point, integral values are always converted as integers. Thus, given
CONVFMT = "%2.2f"
a = 12
b = a ""
the variable b has a string value of "12" and not "12.00".
NOTE: When operating in POSIX mode (such as with the --posix command line option), beware that locale settings may interfere with the way decimal numbers are treated: the decimal separator of the numbers you are feeding to gawk must conform to what your locale would expect, be it a comma (,) or a period (.).
Gawk performs comparisons as follows: If two variables are numeric, they are compared numerically. If one value is numeric and the other has a string value that is a “numeric string,” then comparisons are also done numerically. Otherwise, the numeric value is converted to a string and a string comparison is performed. Two strings are compared, of course, as strings.
Note that string constants, such as "57", are not numeric strings, they are string constants. The idea of “numeric string” only applies to fields, getline input, FILENAME, ARGV elements, ENVIRON elements and the elements of an array created by split() or patsplit() that are numeric strings. The basic idea is that user input, and only user input, that looks numeric, should be treated that way.
Uninitialized variables have the numeric value 0 and the string value "" (the null, or empty, string).
Octal and Hexadecimal Constants
You may use C-style octal and hexadecimal constants in your AWK program source code. For example, the octal value 011 is equal to decimal 9, and the hexadecimal value 0x11 is equal to decimal 17.
String Constants
String constants in AWK are sequences of characters enclosed between double quotes (like "value"). Within strings, certain escape sequences are recognized, as in C. These are:
\\ A literal backslash.
\a The “alert” character; usually the ASCII BEL character.
\b backspace.
\f form-feed.
\n newline.
\r carriage return.
\t horizontal tab.
\v vertical tab.
\x hex digits
The character represented by the string of hexadecimal digits following the \x. As in ANSI C, all following hexadecimal digits are considered part of the escape sequence. (This feature should tell us something about language design by committee.) E.g., "\x1B" is the ASCII ESC (escape) character.
\ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits. E.g., "\033" is the ASCII ESC (escape) character.
\c The literal character c.
The escape sequences may also be used inside constant regular expressions (e.g., /[ \t\f\n\r\v]/ matches whitespace characters).
In compatibility mode, the characters represented by octal and hexadecimal escape sequences are treated literally when used in regular expression constants. Thus, /a\52b/ is equivalent to /a\*b/.
PATTERNS AND ACTIONS
AWK is a line-oriented language. The pattern comes first, and then the action. Action statements are enclosed in { and }. Either the pattern may be missing, or the action may be missing, but, of course, not both. If the pattern is missing, the action is executed for every single record of input. A missing action is equivalent to
{ print }
which prints the entire record.
Comments begin with the # character, and continue until the end of the line. Blank lines may be used to separate statements. Normally, a statement ends with a newline, however, this is not the case for lines ending in a comma, {, ?, :, &&, or ||. Lines ending in do or else also have their statements automatically continued on the following line. In other cases, a line can be continued by ending it with a “\”, in which case the newline is ignored.
Multiple statements may be put on one line by separating them with a “;”. This applies to both the statements within the action part of a pattern-action pair (the usual case), and to the pattern-action statements themselves.
awk 'pattern{action}' inputfile
Patterns
AWK patterns may be one of the following:
BEGIN
END
BEGINFILE
ENDFILE
/regular expression/
relational expression
pattern && pattern
pattern || pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2
BEGIN and END are two special kinds of patterns which are not tested against the input. The action parts of all BEGIN patterns are merged as if all the statements had been written in a single BEGIN block. They are executed before any of the input is read. Similarly, all the END blocks are merged, and executed when all the input is exhausted (or when an exit statement is executed). BEGIN and END patterns cannot be combined with other patterns in pattern expressions. BEGIN and END patterns cannot have missing action parts.
BEGINFILE and ENDFILE are additional special patterns whose bodies are executed before reading the first record of each command line input file and after reading the last record of each file.Inside the BEGINFILE rule, the value of ERRNO will be the empty string if the file could be opened successfully. Otherwise, there is some problem with the file and the code should use nextfile to skip it. If that is not done, gawk produces its usual fatal error for files that cannot be opened.
For /regular expression/ patterns, the associated statement is executed for each input record that matches the regular expression. Regular expressions are the same as those in egrep(1), and are summarized below.
A relational expression may use any of the operators defined below in the section on actions. These generally test whether certain fields match certain regular expressions.
The &&, ||, and ! operators are logical AND, logical OR, and logical NOT, respectively, as in C. They do
short-circuit evaluation, also as in C, and are used for combining more primitive pattern expressions. As in most languages, parentheses may be used to change the order of evaluation.
The ?: operator is like the same operator in C. If the first pattern is true then the pattern used for testing is the second pattern, otherwise it is the third. Only one of the second and third patterns is evaluated.
The pattern1, pattern2 form of an expression is called a range pattern. It matches all input records starting with a record that matches pattern1, and continuing until a record that matches pattern2, inclusive. It does not combine with any other sort of pattern expression.
Regular Expressions
Regular expressions are the extended kind found in egrep. They are composed of characters as follows:
\c matches the literal character c.
. matches any character including newline.
^ matches the beginning of a string.
$ matches the end of a string.
[abc...] character list, matches any of the characters abc....
[^abc...] negated character list, matches any character except abc....
r1|r2 alternation: matches either r1 or r2.
r1r2 concatenation: matches r1, and then r2.
r+ matches one or more r's.
r* matches zero or more r's.
r? matches zero or one r's.
(r) grouping: matches r.
r{n}
r{n,}
r{n,m} One or two numbers inside braces denote an interval expression. If there is one number in the braces, the preceding regular expression r is repeated n times. If there are two numbers separated by a comma, r is repeated n to m times. If there is one number followed by a comma, then r is repeated at least n times.
\y matches the empty string at either the beginning or the end of a word.
\B matches the empty string within a word.
\< matches the empty string at the beginning of a word.
\> matches the empty string at the end of a word.
\s matches any whitespace character.
\S matches any nonwhitespace character.
\w matches any word-constituent character (letter, digit, or underscore).
\W matches any character that is not word-constituent.
\` matches the empty string at the beginning of a buffer (string).
\' matches the empty string at the end of a buffer.
The escape sequences that are valid in string constants (see below) are also valid in regular expressions.
Character classes are a feature introduced in the POSIX standard. A character class is a special notation for describing lists of characters that have a specific attribute, but where the actual characters themselves can vary from country to country and/or from character set to character set. For example, the notion of what is an alphabetic character differs in the USA and in France.
A character class is only valid in a regular expression inside the brackets of a character list. Character classes consist of [:, a keyword denoting the class, and :]. The character classes defined by the POSIX standard are:
[:alnum:] Alphanumeric characters.
[:alpha:] Alphabetic characters.
[:blank:] Space or tab characters.
[:cntrl:] Control characters.
[:digit:] Numeric characters.
[:graph:] Characters that are both printable and visible. (A space is printable, but not visible, while an a is both.)
[:lower:] Lowercase alphabetic characters.
[:print:] Printable characters (characters that are not control characters.)
[:punct:] Punctuation characters (characters that are not letter, digits, control characters, or space characters).
[:space:] Space characters (such as space, tab, and formfeed, to name a few).
[:upper:] Uppercase alphabetic characters.
[:xdigit:] Characters that are hexadecimal digits.
For example, before the POSIX standard, to match alphanumeric characters, you would have had to write /[A-Za-z0-9]/. If your character set had other alphabetic characters in it, this would not match them, and if your character set collated differently from ASCII, this might not even match the ASCII alphanumeric characters. With the POSIX character classes, you can write /[[:alnum:]]/, and this matches the alphabetic and numeric characters in your character set, no matter what it is.
Two additional special sequences can appear in character lists. These apply to non-ASCII character sets, which can have single symbols (called collating elements) that are represented with more than one character, as well as several characters that are equivalent for collating, or sorting, purposes. (E.g., in French, a plain “e” and a grave-accented “`” are equivalent.)
Collating Symbols
A collating symbol is a multi-character collating element enclosed in [. and .]. For example, if ch is a collating element, then [[.ch.]] is a regular expression that matches this collating element, while [ch] is a regular expression that matches either c or h.
Equivalence Classes
An equivalence class is a locale-specific name for a list of characters that are equivalent. The name is enclosed in [= and =]. For example, the name e might be used to represent all of “e,” “´,” and “`.” In this case, [[=e=]] is a regular expression that matches any of e, ´, or `.
These features are very valuable in non-English speaking locales. The library functions that gawk uses for regular expression matching currently only recognize POSIX character classes; they do not recognize collating symbols or equivalence classes.
The \y, \B, \<, \>, \s, \S, \w, \W, \`, and \' operators are specific to gawk; they are extensions based on facilities in the GNU regular expression libraries.
The various command line options control how gawk interprets characters in regular expressions.
No options
In the default case, gawk provide all the facilities of POSIX regular expressions and the GNU regular expression operators described above.
--posix
Only POSIX regular expressions are supported, the GNU operators are not special. (E.g., \w matches a literal w).
--traditional
Traditional Unix awk regular expressions are matched. The GNU operators are not special, and interval expressions are not available. Characters described by octal and hexadecimal
escape sequences are treated literally, even if they represent regular expression metacharacters.
--re-interval
Allow interval expressions in regular expressions, even if --traditional has been provided.
Actions
Action statements are enclosed in braces, { and }. Action statements consist of the usual assignment, conditional, and looping statements found in most languages. The operators, control statements, and input/output statements available are patterned after those in C.
Operators
The operators in AWK, in order of decreasing precedence, are
(...) Grouping
$ Field reference.
++ -- Increment and decrement, both prefix and postfix.
^ Exponentiation (** may also be used, and **= for the assignment operator).
+ - ! Unary plus, unary minus, and logical negation.
* / % Multiplication, division, and modulus.
+ - Addition and subtraction.
space String concatenation.
| |& Piped I/O for getline, print, and printf.
< > <= >= != ==
The regular relational operators.
~ !~ Regular expression match, negated match. NOTE: Do not use a constant regular expression (/foo/) on the left-hand side of a ~ or !~. Only use one on the right-hand side. The expression /foo/ ~ exp has the same meaning as (($0 ~ /foo/) ~ exp). This is usually not what was intended.
in Array membership.
&& Logical AND.
|| Logical OR.
?: The C conditional expression. This has the form expr1 ? expr2 : expr3. If expr1 is true, the value of the expression is expr2, otherwise it is expr3. Only one of expr2 and expr3 is evaluated.
= += -= *= /= %= ^=
Assignment. Both absolute assignment (var = value) and operator-assignment (the other forms) are supported.
Control Statements
The control statements are as follows:
if (condition) statement [ else statement ]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
delete array
exit [ expression ]
{ statements }
switch (expression) {
case value|regex : statement
...
[ default: statement ]
}
I/O Statements
The input/output statements are as follows:
close(file [, how]) Close file, pipe or co-process. The optional how should only be used when closing one end of a two-way pipe to a co-process. It must be a string value, either "to" or "from".
getline Set $0 from next input record; set NF, NR, FNR.
getline <file Set $0 from next record of file; set NF.
getline var Set var from next input record; set NR, FNR.
getline var <file Set var from next record of file.
command | getline [var]
Run command piping the output either into $0 or var, as above.
command |& getline [var]
Run command as a co-process piping the output either into $0 or var, as above. Co-processes are a gawk extension. (command can also be a socket. See the subsection Special File Names, below.)
next Stop processing the current input record. The next input record is read and processing starts over with the first pattern in the AWK program. If the end of the input data is reached, the END block(s), if any, are executed.
nextfile Stop processing the current input file. The next input record read comes from the next input file. FILENAME and ARGIND are updated, FNR is reset to 1, and processing starts over with the first pattern in the AWK program. If the end of the input data is reached, the END block(s), if any, are executed.
print Print the current record. The output record is terminated with the value of the ORS variable.
print expr-list Print expressions. Each expression is separated by the value of the OFS variable. The output record is terminated with the value of the ORS variable.
print expr-list >file Print expressions on file. Each expression is separated by the value of the OFS variable. The output record is terminated with the value of the ORS variable.
printf fmt, expr-list Format and print. See The printf Statement, below.
printf fmt, expr-list >file Format and print on file.
system(cmd-line) Execute the command cmd-line, and return the exit status. (This may not be available on non-POSIX systems.)
fflush([file]) Flush any buffers associated with the open output file or pipe file. If file is missing, then flush standard output. If file is the null string, then flush all open output files and pipes.
Additional output redirections are allowed for print and printf.
print ... >> file
Appends output to the file.
print ... | command
Writes on a pipe.
print ... |& command
Sends data to a co-process or socket. (See also the subsection Special File Names, below.)
The getline command returns 1 on success, 0 on end of file, and -1 on an error. Upon an error, ERRNO contains a string describing the problem.
NOTE: Failure in opening a two-way socket will result in a non-fatal error being returned to the calling function. If using a pipe, co-process, or socket to getline, or from print or printf within a loop, you must use close() to create new instances of the command or socket. AWK does not automatically close pipes, sockets, or co-processes when they return EOF.
The printf Statement
The AWK versions of the printf statement and sprintf() function (see below) accept the following conversion specification formats:
%c A single character. If the argument used for %c is numeric, it is treated as a character and printed. Otherwise, the argument is assumed to be a string, and the only first character of that string is printed.
%d, %i A decimal number (the integer part).
%e, %E A floating point number of the form [-]d.dddddde[+-]dd. The %E format uses E instead of e.
%f, %F A floating point number of the form [-]ddd.dddddd. If the system library supports it, %F is available as well. This is like %f, but uses capital letters for special “not a number” and “infinity” values. If %F is not available, gawk uses %f.
%g, %G Use %e or %f conversion, whichever is shorter, with nonsignificant zeros suppressed. The %G format uses %E instead of %e.
%o An unsigned octal number (also an integer).
%u An unsigned decimal number (again, an integer).
%s A character string.
%x, %X An unsigned hexadecimal number (an integer). The %X format uses ABCDEF instead of abcdef.
%% A single % character; no argument is converted.
Optional, additional parameters may lie between the % and the control letter:
count$ Use the count'th argument at this point in the formatting. This is called a positional specifier and is intended primarily for use in translated versions of format strings, not in the original text of an AWK program. It is a gawk extension.
- The expression should be left-justified within its field.
space For numeric conversions, prefix positive values with a space, and negative values with a minus sign.
+ The plus sign, used before the width modifier (see below), says to always supply a sign for numeric conversions, even if the data to be formatted is positive. The + overrides the space modifier.
# Use an “alternate form” for certain control letters. For %o, supply a leading zero. For %x, and %X, supply a leading 0x or 0X for a nonzero result. For %e, %E, %f and %F, the result always contains a decimal point. For %g, and %G, trailing zeros are not removed from the result.
0 A leading 0 (zero) acts as a flag, that indicates output should be padded with zeroes instead of spaces. This applies only to the numeric output formats. This flag only has an effect when the field width is wider than the value to be printed.
width The field should be padded to this width. The field is normally padded with spaces. If the 0 flag has been used, it is padded with zeroes.
.prec A number that specifies the precision to use when printing. For the %e, %E, %f and %F, formats, this specifies the number of digits you want printed to the right of the decimal point. For the %g, and %G formats, it specifies the maximum number of significant digits. For the %d, %i, %o, %u, %x, and %X formats, it specifies the minimum number of digits to print. For %s, it specifies the maximum number of characters from the string that should be printed.
The dynamic width and prec capabilities of the ANSI C printf() routines are supported. A * in place of either the width or prec specifications causes their values to be taken from the argument list to printf or sprintf(). To use a positional specifier with a dynamic width or precision, supply the count$ after the * in the format string. For example, "%3$*2$.*1$s".
- [原] KVM 虚拟化原理探究(1)— overview
KVM 虚拟化原理探究- overview 标签(空格分隔): KVM 写在前面的话 本文不介绍kvm和qemu的基本安装操作,希望读者具有一定的KVM实践经验.同时希望借此系列博客,能够对KVM底层 ...
- Activity之概览屏幕(Overview Screen)
概览屏幕 概览屏幕(也称为最新动态屏幕.最近任务列表或最近使用的应用)是一个系统级别 UI,其中列出了最近访问过的 Activity 和任务. 用户可以浏览该列表并选择要恢复的任务,也可以通过滑动清除 ...
- awk命令简介
awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各 ...
- awk使用说明
原文地址:http://www.cnblogs.com/verrion/p/awk_usage.html Awk使用说明 运维必须掌握的三剑客工具:grep(文件内容过滤器),sed(数据流处理器), ...
- awk应用
h3 { color: rgb(255, 255, 255); background-color: rgb(30,144,255); padding: 3px; margin: 10px 0px } ...
- 3.awk数组详解及企业实战案例
awk数组详解及企业实战案例 3.打印数组: [root@nfs-server test]# awk 'BEGIN{array[1]="zhurui";array[2]=" ...
- shell——awk
awk -F"分隔符" "command" filename awk -F":" '{print $1}' /etc/passwd 字段引用 ...
- 【Linux】AWK入门
什么是AWK AWK是一种用于处理文本的编程语言工具,一个模式匹配程序.一个典型的示例是将数据转换成格式化的报告. 在命令行输入如下awk命令: awk -F":" '{ prin ...
- 基本shell编程【3】- 常用的工具awk\sed\sort\uniq\od
awk awk是个很好用的东西,大量使用在linux系统分析的结果展示处理上.并且可以使用管道, input | awk '' | output 1.首先要知道形式 awk 'command' fi ...
随机推荐
- [Atcoder Regular Contest 063] Tutorial
Link: ARC063 传送门 C: 将每种颜色的连续出现称为一段,寻找总段数即可 #include <bits/stdc++.h> using namespace std; ,len; ...
- 【dfs】【哈希表】bzoj2783 [JLOI2012]树
因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...
- java web(学习笔记)项目路径问题
最近刚接触java web特别是是关于项目路径这一块很晕,就把自己遇到的一些疑惑和理解写下来. 首先贴上路径,这里用的是eclipse. 其中我们要注意看WebContent目录,这是web程序的根目 ...
- 零基础带你看Spring源码——IOC控制反转
本章开始来学习下Spring的源码,看看Spring框架最核心.最常用的功能是怎么实现的. 网上介绍Spring,说源码的文章,大多数都是生搬硬推,都是直接看来的观点换个描述就放出来.这并不能说有问题 ...
- INLINE-BLOCK和FLOAT(二)(转)
一.一抹前言 没有爱的日子,时间如指尖细沙,不知不觉就流逝了.写“CSS float浮动的深入研究.详解及拓展(一)”和“CSS float浮动的深入研究.详解及拓展(二)”似乎就在不久前,然而相隔差 ...
- 51单片机软件I2C驱动中的CY
做一个MSP430的项目,虽然430内部有硬件I2C的模块,略难,准备直接移植51的..碰到一句代码 dat <<= 1; //移出数据的最高位 pSDA = CY; //送数据口 dig ...
- 简单抓取安居客房产数据,并保存到Oracle数据库
思路和上一篇差不多,先获取网站html文件,使用BeautifulSoup进行解析,将对应属性取出,逐一处理,最后把整理出的记录保存到oracle中,持久化储存. '''Created on 2017 ...
- 后台SQL注入实例
简要描述: 汉庭连锁酒店后台SQL注入,可绕过登陆限制进入后台,可脱库. 详细说明: 问题发生在这个站点.http://miaosha.htinns.com/ 标题内没有写具体信息.因为怕发布后被人入 ...
- vulkan
https://gfxbench.com/device.jsp?benchmark=gfx40&os=Android&api=gl&D=Asus+ZenFone+4+%28Ad ...
- win下写任务提交给集群
一,复制和删除hdfs中的文件 import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.{SparkConf, S ...