【BZOJ3122】[Sdoi2013]随机数生成器

Description

Input

输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数。  
 
接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据。保证X1和t都是合法的页码。

注意:P一定为质数

Output

共T行,每行一个整数表示他最早读到第t页是哪一天。如果他永远不会读到第t页,输出-1。

Sample Input

3
7 1 1 3 3
7 2 2 2 0
7 2 2 2 1

Sample Output

1
3
-1

HINT

0<=a<=P-1,0<=b<=P-1,2<=P<=10^9

题解:又一道特判神题~

若A=0,直接判;若A=1,用exgcd求;若A>1,此时要用到高中数学的知识。

此时xi+c变成了等比数列

然后上BSGS就行了

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <cmath>
  4. #include <iostream>
  5. #include <map>
  6. using namespace std;
  7. typedef long long ll;
  8. map<ll,ll> mp;
  9. ll pm(ll x,ll y,ll z)
  10. {
  11. ll ret=1;
  12. while(y)
  13. {
  14. if(y&1) ret=ret*x%z;
  15. x=x*x%z,y>>=1;
  16. }
  17. return ret;
  18. }
  19. ll solve(ll A,ll B,ll P)
  20. {
  21. if(!A&&!B) return 0;
  22. if(!A) return -1;
  23. ll i,x,y,m;
  24. mp.clear(),mp[B]=0,m=ceil(sqrt(P));
  25. for(x=1,i=1;i<=m;i++) x=x*A%P,mp[x*B%P]=i;
  26. for(y=1,i=1;i<=m;i++)
  27. {
  28. y=y*x%P;
  29. if(mp.find(y)!=mp.end()) return i*m-mp[y];
  30. }
  31. return -1;
  32. }
  33. ll exgcd(ll a,ll b,ll &x,ll &y)
  34. {
  35. if(b==0){x=1,y=0; return a;}
  36. ll tmp=exgcd(b,a%b,x,y),t=x;
  37. x=y,y=t-a/b*x;
  38. return tmp;
  39. }
  40. int main()
  41. {
  42. ll T,A,B,P,X,t,tmp,xx,yy;
  43. scanf("%lld",&T);
  44. while(T--)
  45. {
  46. scanf("%lld%lld%lld%lld%lld",&P,&A,&B,&X,&t);
  47. if(X==t)
  48. {
  49. printf("1\n");
  50. continue;
  51. }
  52. if(A==0)
  53. {
  54. if(B==t) printf("2\n");
  55. else printf("-1\n");
  56. continue;
  57. }
  58. if(A==1)
  59. {
  60. if(B==0)
  61. {
  62. printf("-1\n");
  63. continue;
  64. }
  65. ll g=exgcd(B,P,xx,yy),C=t+B-X;
  66. if(C%g)
  67. {
  68. printf("-1\n");
  69. continue;
  70. }
  71. C/=g,P/=g,xx=xx*C%P;
  72. if(xx<=0) xx+=P;
  73. printf("%lld\n",xx);
  74. continue;
  75. }
  76. tmp=solve(A,((A-1)*t+B)%P*pm(((A-1)*X+B)%P,P-2,P)%P,P)+1;
  77. if(!tmp) printf("-1\n");
  78. else printf("%lld\n",tmp);
  79. }
  80. return 0;
  81. }

【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判的更多相关文章

  1. Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)

    Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...

  2. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  3. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

  4. bzoj3122 [SDOI2013]随机数生成器

    bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...

  5. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  6. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  7. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  8. BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】

    题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...

  9. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

随机推荐

  1. Node.js nvshens图片批量下载爬虫 1.00

    //====================================================== // www.nvshens.com图片批量下载Node.js爬虫1.00 // 此程 ...

  2. 可伸缩Web架构与分布式系统(2)

    开源软件近年来已变为构建一些大型网站的基础组件.并且伴随着网站的成长,围绕着它们架构的最佳实践和指导准则已经显露.这篇文章旨在涉及一些在设计大型网站时需要考虑的关键问题和一些为达到这些目标所使用的组件 ...

  3. Linux使用dd命令快速生成大文件(转)

    dd命令可以轻易实现创建指定大小的文件,如 dd if=/dev/zero of=test bs=1M count=1000 会生成一个1000M的test文件,文件内容为全0(因从/dev/zero ...

  4. Altium Designer 10 | 常用库及部分元件名中英文对照表

    ———————————————————————————————————————————— 常用库及部分元件名中英文对照表 - - - - - - - - - - - - - - - - - - - - ...

  5. 网络协议系列之三:IP

    前言 这篇博客主要对IP协议中一些基础知识点加以总结,并将书中一些晦涩难懂的部分去除了.IP地址协议是网络层中最重要的协议,IP地址协议能够对因特网上的全部设备进行唯一标识.也正由于有了IP协议,我们 ...

  6. 调用腾讯QQ启动

    http://wpa.qq.com/msgrd?v=3&uin=88888888&site=qq&menu=yes

  7. Quartz.Net线程处理用到的两个Attribute

    1.DisallowConcurrentExecution 加到IJob实现类上,主要防止相同JobDetail并发执行. 简单来说,现在有一个实现了IJob接口的CallJob,触发器设置的时间是每 ...

  8. 流水线策略 相关算法 Tomasulo算法与记分牌调度算法

    设计流水线策略时,可参考 Tomasulo算法与记分牌调度算法  (这两个是霍老师推荐的算法,自己未了解过)

  9. 网页中多一些常见效果之伸缩菜单(主要是学习js的书写方法)

    效果如下图: 代码很简单,如下: <!doctype html> <html lang="en"> <head> <meta charse ...

  10. systemd 管理python 程序

    [Unit] Description = test-minapp After = network.target [Service] PermissionsStartOnly = true PIDFil ...