Ombrophobic Bovines

Time Limit: 1000MSMemory Limit: 65536K

Total Submissions: 21660Accepted: 4658

题目链接http://poj.org/problem?id=2391

Description:

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input:

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output:

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input:

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output:

110

题意:

给出n个点,m条无向路径,现在每个点都有一定数量的牛,然后我们知道每个点都能承装的最多的牛,以及经过一条路径需要的时间。

现在每头牛都要迁徙,问最少需要多少时间所有的牛都可以成功跑进点中,满足题中给出的条件。

题解:

考虑网络流,将点拆开,每两个点之间连一条边,容量为这两个点之间的花费最小时间。最小花费由floyd易求。

源点连点,容量为这个点有多少头牛;汇点连点,容量为这个点最多能容纳多少头牛。

显然时间越多牛就越可能全部到达,但我们这里要求的最大时间最小,可以跑个最小费用最大流,但时间复杂度有点高。

我们就考虑二分时间,然后利用二分的时间来限制前往哪些点,之后跑最大流就好了。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define s 0
#define t 2*n+1
#define INF 1e9
using namespace std;
typedef long long ll;
const int N = , M = ;
int n,m,tot,need;
int lim[N],has[N],head[N],d[N];
ll mp[N][N];
struct Edge{
int v,next,c;
}e[(N*N)<<];
void adde(int u,int v,int c){
e[tot].v=v;e[tot].c=c;e[tot].next=head[u];head[u]=tot++;
e[tot].v=u;e[tot].c=;e[tot].next=head[v];head[v]=tot++;
}
bool bfs(int S,int T){
memset(d,,sizeof(d));d[S]=;
queue <int > q;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!d[v] && e[i].c>){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T]!=;
}
int dfs(int S,int a){
int flow=,f;
if(S==t || a==) return a;
for(int i=head[S];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]!=d[S]+) continue ;
f=dfs(v,min(a,e[i].c));
if(f){
e[i].c-=f;
e[i^].c+=f;
flow+=f;
a-=f;
if(a==) break;
}
}
if(!flow) d[S]=-;
return flow;
}
int Dinic(){
int max_flow=;
while(bfs(,t)) max_flow+=dfs(,INF);
return max_flow;
}
bool check(ll x){
memset(head,-,sizeof(head));tot=;
for(int i=;i<=n;i++) adde(s,i,has[i]);
for(int i=n+;i<=*n;i++) adde(i,t,lim[i-n]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(mp[i][j]<=x) adde(i,j+n,INF);
int flow = Dinic();
for(int i=head[s];i!=-;i=e[i].next){
int now = e[i].c;
if(now>) return false;
}
return true ;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d%d",&has[i],&lim[i]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
mp[i][j]=i==j ? : 1e18;
for(int i=;i<=m;i++){
int u,v;ll w;
scanf("%d%d%I64d",&u,&v,&w);
ll tmp = mp[u][v];
mp[u][v]=mp[v][u]=min(tmp,w);
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(mp[i][j]>mp[i][k]+mp[k][j] && mp[i][k]!=1e18 && mp[k][j]!=1e18)
mp[i][j]=mp[i][k]+mp[k][j];
ll l = ,r = 1e18,mid;
while(l<r){
mid = (l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}
if(r==1e18) cout<<-;
else cout<<l<<endl;
return ;
}

POJ2391:Ombrophobic Bovines(最大流+Floyd+二分)的更多相关文章

  1. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  2. POJ2391 Ombrophobic Bovines 网络流拆点+二分+floyed

    题目链接: id=2391">poj2391 题意: 有n块草地,每块草地上有一定数量的奶牛和一个雨棚,并给出了每一个雨棚的容(牛)量. 有m条路径连接这些草地  ,这些路径是双向的, ...

  3. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  4. poj2391 Ombrophobic Bovines 拆点+二分法+最大流

    /** 题目:poj2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题意:有n块区域,第i块区域有ai头奶牛,以及一个可以容纳bi ...

  5. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  6. POJ2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19359   Accepted: 4 ...

  7. POJ2391 Ombrophobic Bovines(网络流)(拆点)

                         Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

  8. poj2391 Ombrophobic Bovines 题解

    http://poj.org/problem?id=2391 floyd+网络流+二分 题意:有一个有向图,里面每个点有ai头牛,快下雨了牛要躲进雨棚里,每个点有bi个雨棚,每个雨棚只能躲1头牛.牛可 ...

  9. poj2112 最大流+floyd+二分

    题意:给一堆点,一部分是牛,一部分是机器,每头牛必须要走到一个机器,每个点之间有距离,要求每头牛都能找得到一台机器(机器有最大容量)的情况下,走的最远的牛距离最小 题解:二分答案,小于该距离的边才能加 ...

随机推荐

  1. Fibonacci使用递归和循环实现

    #include<stdio.h> double Fibonacci(int i); double Fibonacci_(int i); int main(void) { int i; p ...

  2. linux网络服务实验

    1.设置window IP地址为192.168.3.XX,掩码24位. 2.设置Linux IP地址为192.168.3.YY,掩码24位.window与Linux互相ping通. 3.在linux中 ...

  3. Android log 里面快速搜索错误堆栈 ( 关键字)

    有时候,别人给你的log 文件,是一个文件夹,里面放了很多文件.但是可能你需要的log 只有几行.这时候不可能手工搜索的. 那怎么办呢?使用FileLocationPro.下载地址: https:// ...

  4. jenkins使用Role Strategy管理用户权限

    下载插件地址:https://wiki.jenkins.io/display/JENKINS/Role+Strategy+Plugin 1. 安装好插件后,进入jenkins系统管理的Configur ...

  5. linux常用命令补充详细

    1.ls命令 就是list的缩写,通过ls 命令不仅可以查看linux文件夹包含的文件,而且可以查看文件权限(包括目录.文件夹.文件权限)查看目录信息等等 常用参数搭配: ls -a 列出目录所有文 ...

  6. LeetCode 215——数组中的第 K 个最大元素

    1. 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 ...

  7. JAVA的文件操作【转】

    11.3 I/O类使用 由于在IO操作中,需要使用的数据源有很多,作为一个IO技术的初学者,从读写文件开始学习IO技术是一个比较好的选择.因为文件是一种常见的数据源,而且读写文件也是程序员进行IO编程 ...

  8. WebSocket 与 HTTP/2

    个人笔记 WebSocket WebSocket 是一个双向通信协议,它在握手阶段采用 HTTP/1.1 协议(暂时不支持 HTTP/2). 握手过程如下: 首先客户端向服务端发起一个特殊的 HTTP ...

  9. postgres(pl/pgsql)

    复制后期看 https://www.cnblogs.com/stephen-liu74/archive/2012/06/06/2312759.html https://www.cnblogs.com/ ...

  10. oracle server端字符集修改

    1.oracle server端字符集查询 复制代码代码如下: select userenv('language') from dual; server字符集修改: 将数据库启动到RESTRICTED ...