125-背包问题 II

给出n个物品的体积A[i]和其价值V[i],将他们装入一个大小为m的背包,最多能装入的总价值有多大?

注意事项

A[i], V[i], n, m均为整数。你不能将物品进行切分。你所挑选的物品总体积需要小于等于给定的m。

样例

对于物品体积[2, 3, 5, 7]和对应的价值[1, 5, 2, 4], 假设背包大小为10的话,最大能够装入的价值为9。

挑战

O(n x m) memory is acceptable, can you do it in O(m) memory?

标签

背包问题 动态规划 LintCode 版权所有

思路

采用动态规划,首先考虑使用二维数组 dp[i][j] 表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值

动态转移方程为:

dp[i][j] = 0 (i0 || j0)

dp[i][j] = dp[i-1][j] (j < V[i])

dp[i][j] = max(dp[i-1][j-A[i-1]] + V[i-1], dp[i-1][j-1]) (j >= V[i])

过程如下

code

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
int size = A.size(), i = 0, j = 0;
if(size <= 0) {
return 0;
}
vector<vector<int> > dp(size+1, vector<int>(m+1, 0)); for(i=0; i<size+1; i++) {
for(j=0; j<m+1; j++) {
if(i==0 || j==0){
dp[i][j] = 0;
}
else {
if(j >= A[i-1]){
dp[i][j] = (dp[i-1][j-A[i-1]]+V[i-1] > dp[i-1][j])?dp[i-1][j-A[i-1]]+V[i-1]:dp[i-1][j];
}
else{
dp[i][j] = dp[i-1][j];
} }
}
} display(dp);
return dp[size][m];
}
};

但是可以发现,当前 dp[i][j] 的取值仅仅和其上一行(左上角)元素有关,所以可以将二维数组 dp[i][j] 优化为 dp[j]

code

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
int size = A.size(), i = 0, j = 0;
if(size <= 0) {
return 0;
}
vector<int> dp(m+1, 0); for(i=0; i<size+1; i++) {
for(j=m; j>=0; j--) {
if(i==0 || j==0){
dp[j] = 0;
}
else {
if(j >= A[i-1]){
dp[j] = (dp[j-A[i-1]]+V[i-1] > dp[j])?dp[j-A[i-1]]+V[i-1]:dp[j];
}
else{
dp[j] = dp[j];
} }
}
} return dp[m];
}
};

lintcode-125-背包问题 II的更多相关文章

  1. lintcode:背包问题II

    背包问题II 给出n个物品的体积A[i]和其价值V[i],将他们装入一个大小为m的背包,最多能装入的总价值有多大? 注意事项 A[i], V[i], n, m均为整数.你不能将物品进行切分.你所挑选的 ...

  2. 【动态规划】简单背包问题II

    问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec  内存限制: 64 MB提交: 21  解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能 ...

  3. 多重背包问题II

    多重背包问题II 总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i],每个小物品的价值是C[i] 求能够放入背包内的最大物品能够获得的最大价值 和上一个很类似 上一题体积就是价值,这 ...

  4. 5. 多重背包问题 II 【用二进制优化】

    多重背包问题 II 描述 有 NN 种物品和一个容量是 VV 的背包. 第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi. 求解将哪些物品装入背包,可使物品体积总和不超过背 ...

  5. Lintcode: Sort Colors II 解题报告

    Sort Colors II 原题链接: http://lintcode.com/zh-cn/problem/sort-colors-ii/# Given an array of n objects ...

  6. Lintcode: Majority Number II 解题报告

    Majority Number II 原题链接: http://lintcode.com/en/problem/majority-number-ii/# Given an array of integ ...

  7. [LintCode] Wiggle Sort II 扭动排序之二

    Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3]... ...

  8. [LintCode] Paint House II 粉刷房子之二

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  9. [LintCode] House Robber II 打家劫舍之二

    After robbing those houses on that street, the thief has found himself a new place for his thievery ...

  10. lintcode:背包问题

    背包问题 在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i] 样例 如果有4个物品[2, 3, 5, 7] 如果背包的大小为,可以选择的空间. 如果背包的大小 ...

随机推荐

  1. 重置按钮_reset

    function formreset(form){ for(var i=0;i<frmMain.length;i++){ if(frmMain.item(i).type=="text& ...

  2. iOS之苹果调整 App Store 截图上传规则,截图尺寸、大小等

    作者:ASO100链接:https://zhuanlan.zhihu.com/p/23041522来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 自从 8 月中旬苹果向 ...

  3. [codevs1036] 商务旅行

    题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任 ...

  4. ABAP术语-Document Number

    Document Number 原文:http://www.cnblogs.com/qiangsheng/archive/2008/01/28/1055636.html Key which ident ...

  5. 14.2 multiprocessing--多线程

    本模块提供了多进程进行共同协同工作的功能.由于Python存在GIL锁,对于多线程来说,这只是部分代码可以使用多CPU的优势,对于想全部使用多CPU的性能,让每一个任务都充分地使用CPU,那么使用多进 ...

  6. Oracle数据库远程访问

    如果需要访问非本机的Oracle数据库,首先需要安装一个Oracle的客户端,我直接安装的服务器版本的Oracle,也自带客户端. 安装完成后,如果访问本机的服务器的话,直接就可以访问,无需配置, 如 ...

  7. vue服务端渲染浏览器端缓存(keep-alive)

    在使用服务器端渲染时,除了服务端的接口缓存.页面缓存.组建缓存等,浏览器端也避免不了要使用缓存,减少页面的重绘. 这时候我们就会想到vue的keep-alive,接下来我们说一下keep-alive的 ...

  8. java.lang.UnsupportedOperationException: seccomp unavailable: CONFIG_SECCOMP not compiled into kernel, CONFIG_SECCOMP and CONFIG_SECCOMP_FILTER are needed

    错误描述: ElasticSearch集群启动错误,错误的原因是:因为Centos6不支持SecComp,而ES默认bootstrap.system_call_filter为true进行检测,所以导致 ...

  9. 嵌入式框架Zorb Framework搭建五:事件的实现

    我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...

  10. python语句和语法

    python语句和语法 python程序结构: 1.程序由模块构成. 2.模块包含语句. 3.语句包含表达式. 4.表达式建立并处理对象. python的语法实质上是有语句和表达式组成的.表达式处理对 ...