Description

​ 给定正整数DD,求有多少个正整数NN,满足rev(N)=N+Drev(N)=N+D,其中rev(N)rev(N)表示将NN的十进制表示翻转来读得到的数

Input

​ 一个正整数DD

Output

​ 满足上述条件的正整数的个数

Sample Input

Case 1:
63 Case 2:
75 Case 3:
864197532

Sample Output

Case 1:
2 Case 2:
0 Case 3:
1920

HINT

​ 1≤D≤1091≤D≤109

​ 样例1解释:81=18+63,92=29+63

Sol

我们把题目转化成rev(n)-n=d,然后折半搜索,只搜一半,另一半可以直接计算,这样的复杂度为\(O(2^{18})\)左右。

然而还是有更强的做法的,这个不用搜。。可以dp。。而且复杂度只有\(O(d^2*10)\),具体地,在这里:orzDTZ,写得非常详细。

Code

搜索:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
int D,cnt[19],ans;ll b[20];
void dfs(int x,ll res,int L,int now)
{
if(x>(L>>1)-1){if(res==D) ans+=now*(L&1?10:1);return;}
ll i=-9ll;while(i<9ll&&res+(i+1ll)*(b[L-x-1]-b[x])<=D) ++i;
dfs(x+1,res+i*(b[L-x-1]-b[x]),L,now*(x==0&&i>=0?cnt[i+9]-1:cnt[i+9]));
if(++i<=9) dfs(x+1,res+i*(b[L-x-1]-b[x]),L,now*(x==0&&i>=0?cnt[i+9]-1:cnt[i+9]));
}
int main()
{
scanf("%d",&D);
b[0]=1ll;for(int i=1;i<19;++i) b[i]=b[i-1]*10ll;
for(int i=0;i<=9;++i) for(int j=0;j<=9;++j) ++cnt[i-j+9];
for(int i=1;i<=18;++i) dfs(0,0,i,1);
printf("%d",ans);
}

dp:

#include <bits/stdc++.h>
using namespace std;
int d[10005],f[10005][2][2],L,ans,lim,P=1e9+7;char D[10005];
int dp(int n)
{
int m=n>>1,res=0;
for(int i=0;i<=m;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) f[i][j][k]=0;
f[0][0][0]=1;
for(int i=0;i<m;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) if(f[i][j][k]) for(int x=0,y,j1,k1;x<10;x++)
{
k1=x+d[i+1]+k,y=k1%10,k1/=10,j1=10*j+x-y-d[n-i];
if(j1<0||j1>1||(!i&&(!x||!y))) continue;
(f[i+1][j1][k1]+=f[i][j][k])%=P;
}
if(n&1) for(int j=0,mid=(n+1)>>1;j<2;j++) for(int k=0;k<2;k++) if(f[m][j][k]) for(int x=0,y;x<10;x++)
{
y=x+d[mid]+k;
if((x==y%10)&&(y/10==j)) (res+=f[m][j][k])%=P;
}
if(!(n&1)) for(int j=0;j<2;j++) (res+=f[m][j][j])%=P;
return res;
}
int main()
{
scanf("%s",D+1);L=strlen(D+1);lim=L<<1;
for(int i=1;i<=L;i++) d[L-i+1]=D[i]-'0';
for(int i=max(2,L);i<=lim;i++) (ans+=dp(i))%=P;
printf("%d\n",(ans+P)%P);
}

【ARC075F】Mirrored 搜索/数位dp的更多相关文章

  1. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. UVALive 4864 Bit Counting --记忆化搜索 / 数位DP?

    题目链接: 题目链接 题意:如果一个数二进制n有k位1,那么f1[n] = k,如果k有s位二进制1,那么f2[n] = f1[k] = s.  如此往复,直到fx[n] = 1,此时的x就是n的”K ...

  3. hdu_3562_B-number(记忆化搜索|数位DP)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3652 题意:给你一个n,为比n小的能整除13并数字中有13的数有多少个 题解:记忆化搜索:记dp[i] ...

  4. 【记忆化搜索/数位DP】zznu2175(长度为n的含有ACM的字符串)

    随机字符串 题目描述 起名字什么的最麻烦,我们来生成一些随机字符串吧 生成的字符串当然是有要求的: .长度不能超过n .字符串中仅包含大写字母 .生成的字符串必须包含字符串“ACM” ok,是不是很简 ...

  5. 数位DP HDU3652

    B-number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. Hdu 3652 B-number (同余数位DP)

    题目链接: Hdu 3652 B-number 题目描述: 给出一个数n,问 [1, n]区间内有几个数能被13整除并且还有13这个子串? 解题思路: 能整除的数位DP,确定好状态随便搞搞就能过了.d ...

  7. 数位dp/记忆化搜索

    一.引例 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an  ...

  8. [hihocoder 1033]交错和 数位dp/记忆化搜索

    #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1 ...

  9. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

随机推荐

  1. linux中zookeeper

    linux中zookeeper 安装jdk tar -zxvf jdk-11.0.1_linux-x64_bin.tar.gz -C /usr/src sudo vim /etc/profile 输入 ...

  2. java成神之——安全和密码

    安全和密码 加密算法 公钥和私钥加密解密 生成私钥和公钥 加密数据 解密数据 公钥私钥生成的不同算法 密钥签名 生成加密随机数 基本用法 指定算法 加密对象 SealedObject Signatur ...

  3. 解决git gnutls_handshake失败

    sudo apt-get install build-essential fakeroot dpkg-dev mkdir ~/git-openssl cd ~/git-openssl sudo apt ...

  4. PHP class 继承

    1.执行结果 成员名 成员修饰符 方法名 方法修饰符 执行结果 name private setName private 在构造函数函数中执行父类私有方法,子类未能覆盖private成员变量和方法,修 ...

  5. linux进程的管道通信

    linux进程的管道通信 要求 编程实现进程的管道通信,掌握管道通信的同步和互斥机制. 相关函数 pipe管道 指用于连接一个读进程和一个写进程以实现他们之间通信的一个共享文件,又名pipe文件.向管 ...

  6. Apache Derby数据库系统使用方法

    Apache Derby数据库系统使用方法 最近由于项目要求,试用了一下Apache Derby数据库,这里对了解到的内容做一个记录. Apache Derby是一个开源的关系型数据库管理系统,用Ja ...

  7. C#使用HttpHelper类抓取html网页内容

    HttpHelper类(苏飞版)下载地址: http://www.sufeinet.com/thread-3-1-1.html 使用方法及说明(摘自:http://blog.csdn.net/smar ...

  8. C++11中lock_guard和unique_lock的区别

    c++11中有一个区域锁lock_guard,还有第二个区域锁unique_lock. 区域锁lock_guard使用起来比较简单,除了构造函数外没有其他member function,在整个区域都有 ...

  9. 关于equal和toString方法的实验报告

    一 实验目的 了解equal和toString方法 二 实验软件环境 操作系统:windows xp java version: "1.7.0_51" 开发工具:Eclipse S ...

  10. mybatis 框架 的应用之三(操作两张没有关联的表,存在主键和外键关系)

    #注意:要配置开启多条语句操作,否则会报错( org.apache.ibatis.exceptions.PersistenceException) lf-driver=com.mysql.jdbc.D ...