很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定。在默认情况下,最终input占据了多少block,就应该启动多少个Mapper。如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃。这些逻辑确实是正确的,但都是在默认情况下的逻辑。其实如果进行一些客户化的设置,就可以控制了。

在Hadoop中,设置Map task的数量不像设置Reduce task数量那样直接,即:不能够通过API直接精确的告诉Hadoop应该启动多少个Map task。

你也许奇怪了,在API中不是提供了接口org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)吗?这个值难道不可以设置Map task的数量吗?这个API的确没错,在文档上解释”Note: This is only a hint to the framework.“,即这个值对Hadoop的框架来说仅仅是个提示,不起决定性的作用。也就是说,即便你设置了,也不一定得到你想要的效果。

1. InputFormat介绍

在具体设置Map task数量之前,非常有必要了解一下与Map-Reduce输入相关的基础知识。

这个接口(org.apache.hadoop.mapred.InputFormat)描述了Map-Reduce job的输入规格说明(input-specification),它将所有的输入文件分割成逻辑上的InputSplit,每一个InputSplit将会分给一个单独的mapper;它还提供RecordReader的具体实现,这个Reader从逻辑的InputSplit上获取input records并传给Mapper处理。

InputFormat有多种具体实现,诸如FileInputFormat(处理基于文件的输入的基础抽象类), DBInputFormat(处理基于数据库的输入,数据来自于一个能用SQL查询的表),KeyValueTextInputFormat(特殊的FineInputFormat,处理Plain Text File,文件由回车或者回车换行符分割成行,每一行由key.value.separator.in.input.line分割成Key和Value),CompositeInputFormat,DelegatingInputFormat等。在绝大多数应用场景中都会使用FileInputFormat及其子类型。

通过以上的简单介绍,我们知道InputFormat决定着InputSplit,每个InputSplit会分配给一个单独的Mapper,因此InputFormat决定了具体的Map task数量

2. FileInputFormat中影响Map数量的因素

在日常使用中,FileInputFormat是最常用的InputFormat,它有很多具体的实现。以下分析的影响Map数量的因素仅对FileInputFormat及其子类有效,其他非FileInputFormat可以去查看相应的 getSplits(JobConf job, int numSplits) 具体实现即可。

请看如下代码段(摘抄自org.apache.hadoop.mapred.FileInputFormat.getSplits,hadoop-0.20.205.0源代码):

[java] view plaincopy

 
  1. long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
  2. long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize);
  3. for (FileStatus file: files) {
  4. Path path = file.getPath();
  5. FileSystem fs = path.getFileSystem(job);
  6. if ((length != 0) && isSplitable(fs, path)) {
  7. long blockSize = file.getBlockSize();
  8. long splitSize = computeSplitSize(goalSize, minSize, blockSize);
  9. long bytesRemaining = length;
  10. while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
  11. String[] splitHosts = getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);
  12. splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));
  13. bytesRemaining -= splitSize;
  14. }
  15. if (bytesRemaining != 0) {
  16. splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));
  17. }
  18. else if (length != 0) {
  19. String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap);
  20. splits.add(new FileSplit(path, 0, length, splitHosts));
  21. else {
  22. //Create empty hosts array for zero length files
  23. splits.add(new FileSplit(path, 0, length, new String[0]));
  24. }
  25. }
  26. return splits.toArray(new FileSplit[splits.size()]);
  27. protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
  28. return Math.max(minSize, Math.min(goalSize, blockSize));
  29. }

totalSize:是整个Map-Reduce job所有输入的总大小。

numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。

goalSize:是输入总大小与提示Map task数量的比值,即期望每个Mapper处理多少的数据,仅仅是期望,具体处理的数据数由下面的computeSplitSize决定。

minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外

minSize:取的1和mapred.min.split.size中较大的一个。

blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。

splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。

接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block size中取较小的,然后与mapred.min.split.size相比取较大的

3. 如何调整Map的数量

有了2的分析,下面调整Map的数量就很容易了。

3.1 减小Map-Reduce job 启动时创建的Mapper数量

当处理大批量的大数据时,一种常见的情况是job启动的mapper数量太多而超出了系统限制,导致Hadoop抛出异常终止执行。解决这种异常的思路是减少mapper的数量。具体如下:

3.1.1 输入文件size巨大,但不是小文件

这种情况可以通过增大每个mapper的input size,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blockSize通常不可行,因为当HDFS被hadoop namenode -format之后,blockSize就已经确定了(由格式化时dfs.block.size决定),如果要更改blockSize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能通过增大minSize,即增大mapred.min.split.size的值。

3.1.2 输入文件数量巨大,且都是小文件

所谓小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用FileInputFormat衍生的CombineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。具体细节稍后会更新并展开。

3.2 增加Map-Reduce job 启动时创建的Mapper数量

增加mapper的数量,可以通过减小每个mapper的输入做到,即减小blockSize或者减小mapred.min.split.size的值。

参考资料

http://yaseminavcular.blogspot.com/2011/06/how-to-set-number-of-maps-with-hadoop.html

http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.20.205.0

深度分析如何在Hadoop中控制Map的数量(摘抄)的更多相关文章

  1. 深度分析如何在Hadoop中控制Map的数量

    深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...

  2. 如何在hadoop中控制map的个数

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  3. 如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  4. Hadoop 中关于 map,reduce 数量设置

    map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...

  5. mapreduce中控制mapper的数量

    很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...

  6. How to read video frames in hadoop?如何在Hadoop中读取视频帧?

    To process specialized file formats (such as video) in Hadoop, you'd have to write a custom InputFor ...

  7. 深度分析:那些Java中你一定遇到过的问题,一次性帮你搞定!深度分析:那些Java中你一定遇到过的问题,一次性帮你搞定!

    1.java中==和equals和hashCode的区别 基本数据类型的比较的值相等.类的比较的内存的地址,即是否是同一个对象,在不覆盖equals的情况下,同比较内存地址,原实现也为 == ,如St ...

  8. 如何在hadoop中使用外部的python程序文件

    业务场景大概是这样,我需要在公司hadoop集群上对博文进行结巴分词.我的数据是存储在hive表格中的,数据量涉及到五百万用户三个月内发的所有博文. 首先对于数据来说,很简单,在hive表格中就是两列 ...

  9. 深度分析:java设计模式中的原型模式,看完就没有说不懂的

    前言 原型模式(Prototype模式)是指:用原型实例指定创建对象的种类,并且通过拷贝这些原型,创建新的对象 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象,无需知道如何创建的 ...

随机推荐

  1. NO.008-2018.02.13《折桂令·春情》元代:徐再思

    折桂令·春情_古诗文网   折桂令·春情 元代:徐再思 平生不会相思,才会相思,便害相思.生下来以后还不会相思,才刚刚懂了什么是相思,却深受着相思之苦. 身似浮云,心如飞絮,气若游丝.身像飘浮的云,心 ...

  2. SpringBoot使用PageHelper进行分页

    因为SpringBoot就是为了实现没有配置文件,因此之前手动在Mybatis中配置的PageHelper现在需要重新配置,而且配置方式与之前的SSM框架中还是有点点区别.    首先需要在pom文件 ...

  3. 2018.12.2 Mac环境下mysql图形化界面的Navicat premium 12 中文版安装与激活

    软件链接: https://pan.baidu.com/s/1ZUNLQ1DW9rQZUzDXQn2rWQ 提取码: 8i78 复制这段内容后打开百度网盘手机App,操作更方便哦 注意最新版 12.0 ...

  4. App版本号定义与说明基础知识

    版本控制比较普遍的三种命名格式 GNU 风格的版本号命名格式 主版本号 . 次版本号 [. 修正版本号 [. 编译版本号 ]] 示例 : 1.2.1, 2.0, 5.0.0 build-13124 W ...

  5. 【洛谷P3225】[HNOI2012]矿场搭建

    矿场搭建 题目链接 根据题意,发生事故时会有一个挖煤点坍塌, 只有当这个点是割点,会对图的连通性产生影响, 我们首先Tarjan一遍找到所有割点,将原图除去这些割点后, 遍历一遍,找出所有连通块,分三 ...

  6. Android学习笔记_JNI_c调用java代码

    1.编写native方法(java2c)和非native方法(c2java): package com.example.provider; public class CallbackJava { // ...

  7. Restframework中常见API的编写方式

    1.框架一(继承APIView) 这里的第一部分使用骨架请参考我的博客(第三篇),它采用了restframework中最基础的办法(APIView)实现了相关请求,以下的框架都是基于它的 2.框架二( ...

  8. shiro框架 4种授权方式 说明

    1. shiro的配置文件(applicationContext-shiro.xml)中使用filterChain过滤url的方式 详细配置看注释 <?xml version="1.0 ...

  9. iOS:GCD理解1(串行-并行、同步-异步)

    1.获取并行.创建串行 队列 1-1).获取 并行(全局) 队列 ,DISPATCH_QUEUE_PRIORITY_DEFAULT 为默认优先级. dispatch_queue_t global_qu ...

  10. Plupload+easyui+springmvc实现批量上传

    demo下载(java项目):http://pan.baidu.com/s/1ntmoGEd 可兼容所有常用浏览器,当前版本为V1.5.4,如果不兼容,肯定是你没有调试好啊 1.jsp代码 <% ...