codeforces 111D
5 seconds
256 megabytes
standard input
standard output
Little Petya loves counting. He wants to count the number of ways to paint a rectangular checkered board of size n × m (n rows, mcolumns) in k colors. Besides, the coloring should have the following property: for any vertical line that passes along the grid lines and divides the board in two non-empty parts the number of distinct colors in both these parts should be the same. Help Petya to count these colorings.
The first line contains space-separated integers n, m and k (1 ≤ n, m ≤ 1000, 1 ≤ k ≤ 106) — the board's vertical and horizontal sizes and the number of colors respectively.
Print the answer to the problem. As the answer can be quite a large number, you should print it modulo 109 + 7 (1000000007).
2 2 1
1
2 2 2
8
3 2 2
40
description:
一个矩阵有N行M列,现有k种颜色,求符合下列要求的填色方案有多少种
要求:将矩阵竖直的切分成非空的两部分,两部分所包含的颜色数相同(只是颜色数相同,并没有要求是有相同的颜色)
solution:
考虑每种合法的填色方案
假设最左边一列的颜色种类为 a ,则剩余的部分也只能有k种颜色
此时左边的两列的颜色数必定不小于 a(多了一列),除去左边两列所剩的矩阵的颜色数必定不超过 a(少了一列)
又因为这个矩阵符合要求,故左边两列的颜色 = 除去左边两列的 = a
也就说明左边的第二列的颜色必定在左边第一列出现过
如此重复下去,可以证明,除了左边第一列和右边第一列,矩阵剩余部分的颜色必定都在左边第一列(右边第一列)出现过
不妨设左边第一列和右边第一列公共的颜色数为 b ,显然矩阵剩余部分的颜色数不超过 b ,于是中间那部分的填色方案肯定为 b ^ (n (m - 2))
现在要去算左边第一列和右边第一列的填色方案,显然这两个都是相等的,所以现在就是考虑一个1*n的数组用正好a种颜色填充的方案数
这个就是容斥原理就可以知道,设方案数为 F(a, n) = a ^ n - C(a, 1) * (a - 1) ^ n + C(a, 2) * (a - 2) ^ n - ...
于是总方案数为 ∑ C(k, a) * C(a, b) * C(k - a, a - b) F(a, n) ^ 2 * b ^ (n (m - 2))
hint:
注意考虑a和b的枚举范围 //我就是在这里WA了很久……
注意取模 //现在弱爆了,这个都写错
m = 1 也要考虑
code:
#include<bits/stdc++.h>
using namespace std;
char ch; bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
const int maxk=;
const int mod=1E9+;
int fac[maxk],inv[maxk],invfac[maxk];
int n,m,k;
int ksm(int a,int b){
int t;
for (t=;b;b>>=,a=1LL*a*a%mod) if (b&) t=1LL*t*a%mod;
return t;
}
int C(int n,int m){
int res=1LL*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
return res;
}
int main(){
read(n),read(m),read(k);
int lim=max(n,k);
fac[]=;
for (int i=;i<=lim;i++) fac[i]=1LL*fac[i-]*i%mod;
inv[]=;
for (int i=;i<=lim;i++) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
invfac[]=;
for (int i=;i<=lim;i++) invfac[i]=1LL*invfac[i-]*inv[i]%mod;
int ans=;
if (m==){
printf("%d\n",ksm(k,n));
return ;
}
for (int a=;a<=min(n,k);a++){
int res=;
for (int i=;i<a;i++){
int tmp=1LL*C(a,i)*ksm(a-i,n)%mod;
if (i&) tmp=mod-tmp;
res=(res+tmp)%mod;
}
res=1LL*res*res%mod;
res=1LL*res*C(k,a)%mod;
for (int b=max(*a-k,);b<=a;b++){
ans=(ans+1LL*res*C(a,b)%mod*C(k-a,a-b)%mod*ksm(b,n*(m-))%mod)%mod;
}
}
printf("%d\n",ans);
return ;
}
codeforces 111D的更多相关文章
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
- CodeForces - 696B Puzzles
http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...
- CodeForces - 148D Bag of mice
http://codeforces.com/problemset/problem/148/D 题目大意: 原来袋子里有w只白鼠和b只黑鼠 龙和王妃轮流从袋子里抓老鼠.谁先抓到白色老鼠谁就赢. 王妃每次 ...
随机推荐
- java二分法来求一个数组中一个值的key
package TestArray; import java.util.Arrays; /** * 二分法查找 */ public class Test { public static void ma ...
- Sphinx与coreseek
Sphinx : 高性能SQL全文检索引擎 分类 编程技术 Sphinx是一款基于SQL的高性能全文检索引擎,Sphinx的性能在众多全文检索引擎中也是数一数二的,利用Sphinx,我们可以完成比数据 ...
- 如何删除TFS项目
TFS是先建集合,再在集合下面建项目.删除的时候,需要先删除项目,再删除集合,然后重新建.具体步骤如下: 1.删除项目 删除项目必须通过命令来进行删除,调用TFSDeleteProjec ...
- Pc移植到Mac的技术细节
1.样式不对: 2.布局不对: 3.Mac的菜单替换PC的菜单: Mac的菜单替换PC的菜单: 1)左上角图标没有手动添加且不需要添加的情况下出现,而且点击是Help菜单内容: 2)把HelpBtn和 ...
- 近期准备发布我的asp.net框架
此框架为超轻量级架构,适合做中小型的b/s项目
- 「学习记录」《数值分析》第二章计算实习题(Python语言)
在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各 ...
- Django源码分析之server
乍见 Django内置的server基本包括两部分:django.core.servers和django.core.handlers 相识 servers.basehttp是Django自身提供的一个 ...
- spring boot接口 支持https
1.拥有证书,可自己生成测试用javatool生成 keytool -keystore [keyname].jks -genkey -alias tomcat -keyalg RSA 接下来输入相关信 ...
- HDFS分布式集群
一.HDFS伪分布式环境搭建 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时, ...
- select2赋值需要注意
$('#mySelect2').val(data.id).trigger('change'); 需要在赋值后,调用下change事件,不然的话展示值的span不会显示select最新的选中值.