题目:An Easy Problem!

题意:求给出数的最小进制。

思路:暴力WA;

discuss中的idea:

给出数ABCD,若存在n 满足   (A* n^3 +B*n^2+C*n^1+D*n^0)%(n-1) == 0

则((A* n^3)%(n-1) +(B*n^2)%(n-1)+(C*n^1)%(n-1)+D%(n-1))%(n-1) == 0

                                    (A+B+C+D)%(n-1) == 0

NB!

是时候深入的看下数论了;

模运算法则:

模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p    (1)
(a - b) % p = (a % p - b % p) % p    (2)
(a * b) % p = (a % p * b % p) % p     (3)
(a^b) % p = ((a % p)^b) % p       (4)
推论:
若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);                               (10)
若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);                                (11)
若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),
(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p);                                              (12)
 

费马定理:

    若p是素数,a是正整数且不能被p整除,则:a^(p-1) mod p = 1 mod p

推论:

    若p是素数,a是正整数且不能被p整除,则:a^p mod p = a mod p
 
 
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 50005
const double PI = acos(-1.0);
typedef long long LL ; int cal(char x){
if(x >= '' && x <= '')
return x - '';
else if(x >= 'A' && x <= 'Z')
return x - 'A' +;
else if(x >= 'a' && x <= 'z')
return x - 'a' +;
return ;
}
string s;
int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(cin>>s){
int n = s.size();
int maxn = ,sum = ;
for(int i = ;i < n;i++){
sum +=cal(s[i]);
maxn = max(maxn, cal(s[i]));
}
int flag = ;
for(int i = maxn+; i <= ; i++)
if(sum%(i-) == ){
printf("%d\n",i);
flag = ;
break;
}
if(flag)
printf("such number is impossible!\n");
}
return ;
}

数论 : 模运算法则(poj 1152)的更多相关文章

  1. #数论-模运算#POJ 1150、1284、2115

    1.POJ 1150 The Last Non-zero Digit #质因数分解+模运算分治# 先贴两份题解: http://www.hankcs.com/program/algorithm/poj ...

  2. HDU——1395 2^x mod n = 1(取模运算法则)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. POJ 1152 An Easy Problem! (取模运算性质)

    题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R.保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现当中将N进制话成10进制时,数据会溢 ...

  4. poj 3980 取模运算

    取模运算 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10931   Accepted: 6618 Description ...

  5. java 取模运算% 实则取余 简述 例子 应用在数据库分库分表

    java 取模运算%  实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中 ...

  6. a ^ b mod c 取模运算优化反思(老物)

    这是一篇嘲讽我之前的自己采用笨重愚蠢思想去解决问题的日志. RSA 加密与解密涉及到 a ^ b mod c 的问题,如何计算这个值呢? 我会选择 pow(a, b) % c, 事实上在写RSA的时候 ...

  7. mysql中的优化, 简单的说了一下垂直分表, 水平分表(有几种模运算),读写分离.

    一.mysql中的优化 where语句的优化 1.尽量避免在 where 子句中对字段进行表达式操作select id from uinfo_jifen where jifen/60 > 100 ...

  8. c++ 模运算

    在数学里,"模运算"也叫"求余运算",用mod来表示模运算. 对于 a mod b 可以表示为 a = q(商)*b(模数) + r(余数),其中q表示商,b表 ...

  9. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

随机推荐

  1. 全面了解 Linux 服务器 - 2. 查看 Linux 服务器的内存使用情况

    2. 查看 Linux 服务器的内存使用情况 liuqian@ubuntu:~$ free -m total used free shared buffers cached Mem: 1983 186 ...

  2. 剑指Offer:面试题25——二叉树中和为某一值的路径(java实现)

    问题描述: 输入一棵二叉树和一个整数,打印出二叉树中结点指的和为输入整数的所有路径.从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.二叉树结点的定义如下: public class Tree ...

  3. VBS数组

    定义一个数组: dim a(3).这里要注意在VBS里面数组不像其他的例如C,C#,JAVA等数组用[]作为数组标志.VBS采用的是().还需要注意的是,这里定义的数组包含a(0),a(1),a(2) ...

  4. dedecms代码研究五

    上一次留几个疑问: 1)DedeTagParse类LoadTemplet方法. 2)MakeOneTag到底在搞什么. 从DedeTagParse开始前面,我们一直在dedecms的外围,被各种全局变 ...

  5. IO同步、异步与阻塞、非阻塞

    一.同步与异步同步/异步, 它们是消息的通知机制 1. 概念解释A. 同步所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回. 按照这个定义,其实绝大多数函数都是同步调用(例如si ...

  6. highcharts相关属性

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  7. AX2012 DMF数据导入的问题

    由于AX2012的数据结构比较复杂,通过Excel直接导入表的方式很多数据已经难以导入,比如物料信息,2009只需要导入InventTable,InventTableModule和InventItem ...

  8. {CSDN}{英雄会}{反相互}

    思路: 给定一个字符串,求两个不重叠的字串,他们翻转互补.其中一个字符串可以是删掉最多两个字符的原字符串子串. 动态规划,由于可以对子串进行删除操作,我首先想到了LCS问题,但需要枚举所有的长度,这样 ...

  9. dubbo 使用总结

    第一步: 安装注册中心Register,这里选择 zookeeper 1.zookeeper下载url:http://zookeeper.apache.org; 2.下载解压完后如下: 3.将zoo_ ...

  10. MS SQL Server之光标、存储过程和触发器

    光标 通常数据库操作被认为是以数据集为基础的操作,但是光标被用于以记录为单位来进行操作,来获取数据库中的数据的子集.光标一般用于过程化程序里的嵌入的SQL语句. 对光标的定义如下: DECLARE C ...