BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法。。。后来发现那么水。。。。
2257: [Jsoi2009]瓶子和燃料
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 970 Solved: 577
[Submit][Status][Discuss]
Description
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。
Input
第1行:2个整数N,K,
第2..N 行:每行1个整数,第i+1 行的整数为Vi
Output
仅1行,一个整数,表示火星人给出燃料的最大值。
Sample Input
3 2
3
4
4
Sample Output
4
HINT
选择第2 个瓶子和第 个瓶子,火星人被迫会给出4 体积的容量。
Source
首先是裴蜀定理:
若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
所以结果一定是gcd。那么分解因数,扫描一遍找到最大的,且数量>=k(m)的因数,即为答案
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int n,m;
int yz[10000010];
int cnt=0,num;
void work(int x)
{
for (int i=1; i<=sqrt(x); i++)
if (x%i==0) {yz[++cnt]=i;if (i!=x/i) yz[++cnt]=x/i;}
}
int main()
{
n=read(),m=read();
for (int i=1; i<=n; i++) {int x=read();work(x);}
sort(yz+1,yz+cnt+1);
num=1;
for (int i=cnt; i>=1; i--)
{
if (yz[i]==yz[i+1]) {num++;if (num==m) {printf("%d\n",yz[i+1]);break;}}
else num=1;
}
return 0;
}
BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)的更多相关文章
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】
题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...
- BZOJ-2257:瓶子和燃料(裴蜀定理)
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...
- luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理
裴蜀定理的扩展 最后返回的一定是\(k\)个数的\(gcd\) 因此对于每个数暴力分解因子统计即可 #include <map> #include <cstdio> #incl ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
随机推荐
- 看程序写结果(program)
看程序写结果(program) Time Limit:1000ms Memory Limit:64MB 题目描述 LYK 最近在准备 NOIP2017 的初赛,它最不擅长的就是看程序写结果了,因此它拼 ...
- QTP基础学习(一)安装目录介绍
上一篇介绍了QTP 10 安装,安装完成后就可以看到文件的目录了,这里主要介绍以下几个目录及作用. 简单介绍部分目录 1.addins:插件包 2.bin目录:可执行程序,这里存储了很多配置文件.运行 ...
- PHP安装memcache扩展接口步骤
1.将php_memcache.dll文件保存到php的应用程序扩展ext目录中 2.在php.ini配置文件添加扩展的位置,加入一行extension=php_memcache.dll 3.重新启动 ...
- 千份位Javascript Thousand Separator / string format
function Separator(str){ return str.split(/(\d+)(\d{3})(\d{3})(\d{3})(\d{3})/).join(',').replace(/^, ...
- C语言 百炼成钢3
//题目7:用*号输出空心菱形图案 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> # ...
- 从Python爬虫到SAE云和微信公众号:二、新浪SAE上搭建微信服务
目的:用PHP在SAE上搭建一个微信公众号的服务器. 1.申请一个SAE云账号 SAE申请地址:http://sae.sina.com.cn/ 可以使用微博账号登陆,SAE是新浪的云服务,时间也比较 ...
- 对兼容ie浏览器所遇到的问题及总结
1,若直接给一个元素设置absolute定位.在浏览器缩放的时候.位置会错位.解决的方法是给外层的元素设置为relative定位. 2,低版本ie浏览器不支持placeholder属性 3,盒模型上规 ...
- JS结合DOM事件的例子
// 这是初始文字 右边是一个测试文本框: 鼠标划过.点击.松开上面的文字都会有不同的效果,鼠标光标移到.离开文本框也会有不同的效果. 首先新建一个html文件 <!DOCTYPE html&g ...
- JavaScript简易教程(转)
原文:http://www.cnblogs.com/yanhaijing/p/3685304.html 这是我所知道的最完整最简洁的JavaScript基础教程. 这篇文章带你尽快走进JavaScri ...
- MySQL系列——在windows上通过压缩包的方式安装mysql
以下信息来源于: http://dev.mysql.com/doc/refman/5.6/en/windows-create-option-file.html 整个过程主要分为以下几个步骤: 一. ...