POJ   3974

Description

Andy the smart computer science student was attending an algorithms class when the professor asked the students a simple question, "Can you propose an efficient algorithm to find the length of the largest palindrome in a string?"

A string is said to be a palindrome if it reads the same both forwards and backwards, for example "madam" is a palindrome while "acm" is not.

The students recognized that this is a classical problem but couldn't come up with a solution better than iterating over all substrings and checking whether they are palindrome or not, obviously this algorithm is not efficient at all, after a while Andy raised his hand and said "Okay, I've a better algorithm" and before he starts to explain his idea he stopped for a moment and then said "Well, I've an even better algorithm!".

If you think you know Andy's final solution then prove it! Given a string of at most 1000000 characters find and print the length of the largest palindrome inside this string.

Input

Your program will be tested on at most 30 test cases, each test case is given as a string of at most 1000000 lowercase characters on a line by itself. The input is terminated by a line that starts with the string "END" (quotes for clarity). 

Output

For each test case in the input print the test case number and the length of the largest palindrome. 

Sample Input

abcbabcbabcba
abacacbaaaab
END

Sample Output

Case 1: 13
Case 2: 6 题意:给一个字符串求这个串的最长回文子串的长度; 思路:用以下回文串的模板可以在线性时间内完成求最长的回文串的长度;
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int n,p[N];
char s[N],str[N]; void kp()
{
int i;
int mx=;
int id;
///for(i=n;str[i]!=0;i++)
///str[i]=0; ///没有这一句有问题,就过不了ural1297,比如数据:ababa aba;
for(i=;i<n;i++)
{
if(mx>i)
p[i]=min(p[*id-i],p[id]+id-i);
else
p[i]=;
for( ;str[i+p[i]]==str[i-p[i]];p[i]++);
if(p[i]+i>mx)
{
mx=p[i]+i;
id=i;
}
}
} void init()
{
str[]='$';
str[]='#';
for(int i=;i<n;i++)
{
str[i*+]=s[i];
str[i*+]='#';
}
n=n*+;
s[n]=;
} int main()
{
int Case=;
while(scanf("%s",s)!=EOF)
{
if(s[]=='E'&&s[]=='N'&&s[]=='D')
break;
n=strlen(s);
init();
kp();
int ans=;
for(int i=;i<n;i++)
if(p[i]>ans)
ans=p[i]; printf("Case %d: %d\n",Case++,ans-);
}
return ;
}

回文串---Palindrome的更多相关文章

  1. [Swift]LeetCode131. 分割回文串 | Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  2. 分割回文串 · Palindrome Partitioning

    [抄题]: 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 给出 s = "aab",返回 [ ["aa", & ...

  3. LeetCode 131. 分割回文串(Palindrome Partitioning)

    131. 分割回文串 131. Palindrome Partitioning 题目描述 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. LeetC ...

  4. [LeetCode] Longest Palindrome 最长回文串

    Given a string which consists of lowercase or uppercase letters, find the length of the longest pali ...

  5. [LeetCode] Shortest Palindrome 最短回文串

    Given a string S, you are allowed to convert it to a palindrome by adding characters in front of it. ...

  6. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  7. [LeetCode] Palindrome Partitioning 拆分回文串

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  8. lintcode :Valid Palindrome 有效回文串

    题目: 有效回文串 给定一个字符串,判断其是否为一个回文串.只包含字母和数字,忽略大小写. 样例 "A man, a plan, a canal: Panama" 是一个回文. & ...

  9. hdu 1159 Palindrome(回文串) 动态规划

    题意:输入一个字符串,至少插入几个字符可以变成回文串(左右对称的字符串) 分析:f[x][y]代表x与y个字符间至少插入f[x][y]个字符可以变成回文串,可以利用动态规划的思想,求解 状态转化方程: ...

随机推荐

  1. [AX2012]发送广播邮件

    AX 2012可以使用MAPI或者SMTP发送邮件,MAPI是客户端方法,需要outlook的协作,而SMTP则是服务器端方法,要求SMTP允许AOS服务器通过它中继.这里要讲的就是如何通过SMTP发 ...

  2. 多线程调用WebClient速度变慢的问题

    设置 System.Net.ServicePoint 对象所允许的最大并发连接数 System.Net.ServicePoint 对象允许的最大并发连接数.默认值为 2 System.Net.Serv ...

  3. 理解RxJava:(三)RxJava的优点

    理解RxJava:(三)RxJava的优点 在第一部分,讲解了RxJava的基本结构.在第二部分,展示了operators的强大之处.但是你们可能仍然没有被说服,也没有足够的理由信服.下面是一些能让你 ...

  4. net组件转化成COM组件

    第一步:生成秘钥文件 强名称工具 (Sn.exe) 有助于使用强名称对程序集进行签名.Sn.exe 提供了用于密钥管理.签名生成和签名验证的选项. 1.使用Visual Studio 命令 Visua ...

  5. 【软件分析与挖掘】A Comparative Study of Supervised Learning Algorithms for Re-opened Bug Prediction

    摘要: 本文主要是评估多种监督机器学习算法的有效性,这些算法用于判断一个错误报告是否是reopened的,算法如下: 7种监督学习算法:kNN,SVM, SimpleLogistic,Bayesian ...

  6. Nginx 单机百万QPS环境搭建

    一.背景 最近公司在做一些物联网产品,物物通信用的是MQTT协议,内部权限与内部关系等业务逻辑准备用HTTP实现.leader要求在本地测试中要模拟出百万用户同时在线的需求.虽然该产品最后不一定有这么 ...

  7. 发现新大陆-JMX

    今天接触到这个东西,觉得好有趣,可以用很多第三方的显示层jar包直接在UI界面上操作指定的java对象,网上将这个东西的也挺多的,我个人觉得这个比webServer还强大了.webserver只是公布 ...

  8. oo智慧

    单一职责:学 寝室不能学习,学习要去教室 开闭原则:美 爱美穿衣打扮是扩展 整容是修改,修改有风险,所以对扩展开放,对修改封闭 里氏替换:死 人会死,你是人,你会死 依赖倒置:钱 一切向钱看,钱是抽象 ...

  9. Linux命令:ps / top

    简介:ps - report a snapshot of the current processes. 用途:获取当前时刻程序运行状态 概要:ps [options] 类型:ps is hashed ...

  10. Git 分支合并

    理解核心 Git最初只有一个分支,所有后续分支都是直接或间接的从这个分支切出来的. 在任意两个分支上,向前追溯提交记录,都能找到一个最近的提交同时属于这两个分支,这个提交就是两个分支的分叉节点 分支合 ...