HIVE JOIN_1
HIVE JOIN
概述
Hive join的实现包含了:
- Common (Reduce-side) Join
- Broadcast (Map-side) Join
- Bucket Map Join
- Sort Merge Bucket Join
- Skew Join
这里记录下前两种.
第一种是common join
,就像字面意思那样,它是一种最常见的join实现方式,但是不够灵活,并且性能也不够好。
一个common join
包含了一个map阶段和一个shuffle阶段,以及一个reduce阶段。Map阶段会生成根据join的条件生成所需要的join key
和join value,并将这些信息保存在中间文件中。 Shuffle阶段会对这些文件按照join key进行排序,并且将key相同的数据合并到一个文件
中。Ruduce会进行最终的合并,并产生结果数据。
第二种是broadcast join
,这种方式是取消shuffle和reduce阶段, 将join动作在map 阶段完成, 它会将join中的小表加载到内存中,所有
mapper都可以直接使用内存中的表数据进行join。所有的join 动作都可以在map阶段完成。
如何将小表加载到内存中也是挺讲究的,先要讲小表加载到内存中,然后将其序列化到一个hashtable file。当map阶段开始的时候,将这个
hashtable file 加载到distributed cache中,并将其分发到每个mapper所在的硬盘里,然后这些mapper将hashtable file加载到内存中,并进行join运算。通过优化,这些小表只需要读一次就OK,如果很多个mappper在同一台机器上,那么就只需要一个份hashtable file。
通过EXPLAIN查看
准备了两张表,分别是test_a
和test_city
。
test_a
的数据如下:
test_a.id | test_a.uid | test_a.city_id |
---|---|---|
1 | 1 | 1 |
2 | 2 | 2 |
3 | 3 | 3 |
test_city
的数据如下:
test_city.id | test_city.name |
---|---|
1 | beijing |
2 | shanghai |
3 | hangzhou |
LEFT JOIN
具体的SQL如下:
explain
select a.id, a.uid, b.name
from
temp.test_a as a
left join
temp.test_city as b
on a.city_id = b.id;
因为表很小,所以就使用了 map side join,具体过程如下:
STAGE DEPENDENCIES:
2 Stage-4 is a root stage
3 Stage-3 depends on stages: Stage-4
4 Stage-0 depends on stages: Stage-3
5
6 STAGE PLANS:
7 Stage: Stage-4
8 Map Reduce Local Work
9 Alias -> Map Local Tables://从文件中读取数据
10 $hdt$_1:b
11 Fetch Operator
12 limit: -1
13 Alias -> Map Local Operator Tree:
14 $hdt$_1:b
15 TableScan //扫描表 test_city,一行一行读取数据
16 alias: b
17 Statistics: Num rows: 3 Data size: 29 Basic stats: COMPLETE Column stats: NONE
18 Select Operator //选取数据
19 expressions: id (type: bigint), name (type: string)
20 outputColumnNames: _col0, _col1
21 Statistics: Num rows: 3 Data size: 29 Basic stats: COMPLETE Column stats: NONE
22 HashTable Sink Operator //我理解这里应该在将数据放到distribute cache中所用到的key,但是不是很确定。
23 keys:
24 0 _col2 (type: bigint)
25 1 _col0 (type: bigint)
26
27 Stage: Stage-3
28 Map Reduce
29 Map Operator Tree:
30 TableScan
31 alias: a
32 Statistics: Num rows: 3 Data size: 15 Basic stats: COMPLETE Column stats: NONE
33 Select Operator
34 expressions: id (type: bigint), uid (type: bigint), city_id (type: bigint)
35 outputColumnNames: _col0, _col1, _col2
36 Statistics: Num rows: 3 Data size: 15 Basic stats: COMPLETE Column stats: NONE
37 Map Join Operator //注意这里用到了map side join
38 condition map:
39 Left Outer Join0 to 1
40 keys:
41 0 _col2 (type: bigint)
42 1 _col0 (type: bigint)
43 outputColumnNames: _col0, _col1, _col4
44 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
45 Select Operator
46 expressions: _col0 (type: bigint), _col1 (type: bigint), _col4 (type: string)
47 outputColumnNames: _col0, _col1, _col2
48 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
49 File Output Operator
50 compressed: false
51 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
52 table:
53 input format: org.apache.hadoop.mapred.SequenceFileInputFormat
54 output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
55 serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
56 Local Work:
57 Map Reduce Local Work
58
59 Stage: Stage-0
60 Fetch Operator
61 limit: -1
62 Processor Tree:
63 ListSink
如果设置了
set hive.auto.convert.join=false;
就会变为 Reduce-side join. 这是最普遍用到的join实现。整个过程包含了两部分:
STAGE DEPENDENCIES:
2 Stage-1 is a root stage
3 Stage-0 depends on stages: Stage-1
4
5 STAGE PLANS:
6 Stage: Stage-1
7 Map Reduce
8 Map Operator Tree: //map过程
9 TableScan
10 alias: a
11 Statistics: Num rows: 3 Data size: 15 Basic stats: COMPLETE Column stats: NONE
12 Select Operator
13 expressions: id (type: bigint), uid (type: bigint), city_id (type: bigint)
14 outputColumnNames: _col0, _col1, _col2
15 Statistics: Num rows: 3 Data size: 15 Basic stats: COMPLETE Column stats: NONE
16 Reduce Output Operator //map端的Reduce,然后输出到reduce整体的Reduce阶段
17 key expressions: _col2 (type: bigint)
18 sort order: +
19 Map-reduce partition columns: _col2 (type: bigint)
20 Statistics: Num rows: 3 Data size: 15 Basic stats: COMPLETE Column stats: NONE
21 value expressions: _col0 (type: bigint), _col1 (type: bigint)
22 TableScan
23 alias: b
24 Statistics: Num rows: 3 Data size: 29 Basic stats: COMPLETE Column stats: NONE
25 Select Operator
26 expressions: id (type: bigint), name (type: string)
27 outputColumnNames: _col0, _col1
28 Statistics: Num rows: 3 Data size: 29 Basic stats: COMPLETE Column stats: NONE
29 Reduce Output Operator
30 key expressions: _col0 (type: bigint)
31 sort order: +
32 Map-reduce partition columns: _col0 (type: bigint)
33 Statistics: Num rows: 3 Data size: 29 Basic stats: COMPLETE Column stats: NONE
34 value expressions: _col1 (type: string)
35 Reduce Operator Tree:
36 Join Operator
37 condition map:
38 Left Outer Join0 to 1
39 keys:
40 0 _col2 (type: bigint)
41 1 _col0 (type: bigint)
42 outputColumnNames: _col0, _col1, _col4
43 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
44 Select Operator
45 expressions: _col0 (type: bigint), _col1 (type: bigint), _col4 (type: string)
46 outputColumnNames: _col0, _col1, _col2
47 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
48 File Output Operator
49 compressed: false
50 Statistics: Num rows: 3 Data size: 16 Basic stats: COMPLETE Column stats: NONE
51 table:
52 input format: org.apache.hadoop.mapred.SequenceFileInputFormat
53 output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
54 serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
55
56 Stage: Stage-0
57 Fetch Operator
58 limit: -1
59 Processor Tree:
60 ListSink
参考:
HIVE JOIN_1的更多相关文章
- 初识Hadoop、Hive
2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...
- Hive安装配置指北(含Hive Metastore详解)
个人主页: http://www.linbingdong.com 本文介绍Hive安装配置的整个过程,包括MySQL.Hive及Metastore的安装配置,并分析了Metastore三种配置方式的区 ...
- Hive on Spark安装配置详解(都是坑啊)
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...
- HIVE教程
完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那 ...
- 基于Ubuntu Hadoop的群集搭建Hive
Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...
- hive
Hive Documentation https://cwiki.apache.org/confluence/display/Hive/Home 2016-12-22 14:52:41 ANTLR ...
- 深入浅出数据仓库中SQL性能优化之Hive篇
转自:http://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,R ...
- Hive读取外表数据时跳过文件行首和行尾
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 有时候用hive读取外表数据时,比如csv这种类型的,需要跳过行首或者行尾一些和数据无关的或者自 ...
- Hive索引功能测试
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 从Hive的官方wiki来看,Hive0.7以后增加了一个对表建立index的功能,想试下性能是 ...
随机推荐
- HTTP 文件共享服务器工具 - chfs
CuteHttpFileServer/chfs是一个免费的.HTTP协议的文件共享服务器,使用浏览器可以快速访问.它具有以下特点: 单个文件,整个软件只有一个可执行程序,无配置文件等其他文件 跨平台运 ...
- Generator 简介
Generator 就是一种状态机,封装多个内部状态. 执行 Generator 函数会返回一个遍历器对象(),也就是说,Generator 函数除了状态机,还是一个遍历器对象生成函数.返回的遍历器对 ...
- Echache整合Spring缓存实例讲解
摘要:本文主要介绍了EhCache,并通过整合Spring给出了一个使用实例. 一.EhCache 介绍 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中 ...
- C# AE 符号选择器
using ESRI.ArcGIS.Display; using ESRI.ArcGIS.DisplayUI private esriTOCControlItem toccItem = esriTOC ...
- Android 提示: The connection to adb is down, and a severe error has occured.
今天早上打开Eclipse,一直提示 The connection to adb is down, and a severe error has occured,无法执行程序.重新启动Eclipse. ...
- jsp布局中关于<iframe>标签的使用
iframe 元素会创建包括另外一个文档的内联框架(即行内框架). 注意:在 HTML 4.1 Strict DTD 和 XHTML 1.0 Strict DTD 中,不支持 iframe 元素. & ...
- CURRENMONTH TAG in Automation Framework
/** * @param input * <CURRENTMONTH><CURRENTMONTH+1> * @return Month "MM" */ pr ...
- 131.lambda表达式小结
C++ 11中的Lambda表达式用于定义并创建匿名的函数对象,以简化编程工作.Lambda的语法形式如下:[函数对象参数](操作符重载函数参数) mutable或exception声明->返回 ...
- Sqoop框架基础
Sqoop框架基础 本节我们主要需要了解的是大数据的一些协作框架,也是属于Hadoop生态系统或周边的内容,比如: ** 数据转换工具:Sqoop ** 文件收集库框架:Flume ** 任务调度框架 ...
- ViewPager设置不能滚动
设置ViewPager不能滑动 1:设置当前选中的页面 public void setCurrentItem(int item) { mPopulatePending = false; setCurr ...