caioj 1076 动态规划入门(中链式3:最大的算式)
一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong )
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 20;
ll f[MAXN][MAXN][MAXN];
int s[MAXN], n, k;
int main()
{
scanf("%d%d", &n, &k);
REP(i, 1, n + 1)
{
int x;
scanf("%d", &x);
s[i] = s[i-1] + x;
}
REP(i, 1, n + 1)
REP(j, i, n + 1)
f[i][j][0] = s[j] - s[i-1];
ll ans = f[1][n][0];
REP(r, 1, k + 1)
{
REP(d, 2, n + 1)
for(int st = 1; st + d - 1 <= n; st++)
{
int i = st, j = st + d - 1;
REP(p, i, j)
REP(u, 0, r)
f[i][j][r] = max(f[i][j][r], f[i][p][u] * f[p+1][j][r-u-1]);
}
ans = max(ans, f[1][n][r]);
}
printf("%lld\n", ans);
return 0;
}
然后看题解发现可以简化很多
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 20;
ll f[MAXN][MAXN], s[MAXN];
int n, k;
int main()
{
scanf("%d%d", &n, &k);
REP(i, 1, n + 1)
{
ll x;
scanf("%lld", &x);
s[i] = s[i-1] + x;
f[i][0] = s[i];
}
REP(r, 1, k + 1)
REP(i, r + 1, n + 1)
for(int j = i; j >= r + 1; j--)
{
f[i][r] = max(f[i][r], f[j-1][r-1] * (s[i] - s[j - 1]));
f[i][r] = max(f[i][r], f[j-1][r-1] + (s[i] - s[j - 1]));
}
printf("%lld\n", f[n][k]);
return 0;
}
为什么前面几道题要分i到j,而这道题可以只用从1到i呢?
仔细想一想,发现这道题的“后面几堆”可以直接表示出来,不需要用到之前算的f数组, 可以一路推下去。
前两道“后面几堆”需要用到f数组,那么就需要区间这样去做
caioj 1076 动态规划入门(中链式3:最大的算式)的更多相关文章
- 简谈 JavaScript、Java 中链式方法调用大致实现原理
相信,在 JavaScript .C# 中都见过不少链式方法调用,那么,其中实现该类链式调用原理,大家有没有仔细思考过?其中 JavaScript 类库:jQuery 中就存在大量例子,而在 C# 中 ...
- jquery中链式操作的this指向
jquery中链式操作是如何实现? 例如:$(obj).children().css('color','red').next().css('color','red').siblings().css(' ...
- caioj 1075 动态规划入门(中链式2:能量项链)(中链式dp总结)
我又总结了一种动归模型-- 这道题和上一道题很类似,都是给一个序列,然后相邻的元素可以合并 然后合并后的元素可以再次合并 那么就可以用这两道题类似的方法解决 简单来说就是枚举区间,然后枚举断点 加上断 ...
- caioj 1074 动态规划入门(中链式1:最小交换合并问题)
经典的石子合并问题!!! 设f[i][j]为从i到j的最大值 然后我们先枚举区间大小,然后枚举起点终点来更新 f[i][j] = min(f[i][k] + f[k+1][j] + sum(i, j) ...
- caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)
这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...
- caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)
我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...
- AnguarJS中链式的一种更合理写法
假设有这样的一个场景: 我们知道一个用户某次航班,抽象成一个departure,大致是: {userID : user.email,flightID : "UA_343223",d ...
- caioj 1082 动态规划入门(非常规DP6:火车票)
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...
- caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)
我一开始想的是前i个区间的最大值 显然对于当前的区间,有不选和选两种情况 如果不选的话,就继承f[i-1] 如果选的话,找离当前区间最近的区间取最优 f[i] = max(f[i-1, f[j] + ...
随机推荐
- 浏览器输入一个url的过程,以及加载完html文件和js文件的标志
简单理解: 当在浏览器地址栏输入一url时,浏览器会做以下几个步骤: 1.将url转化为ip地址,也就是DNS解析,(先找本地host文件中是否有对应的ip地址,如果有就直接用,没有的话,就按域名的二 ...
- windows下mysql解压版安装及centos下mysql root密码忘记
windows安装 1. 下载zip版的解压后将bin添加到path. 2. 修改解压目录D:\mysql\mysql-5.7.12-winx64下的my.ini,设置路径: 还要添加 [client ...
- WCF客户端获取服务端异常[自定义异常]
引言 经过不断的摸索,询问/调试,终于学会了关于WCF客户端与服务端之间异常的处理机制,在此来记录自己的成果,用于记录与分享给需要的伙伴们. 首先感谢[.NET技术群]里群主[轩]的大力帮助,如有需要 ...
- System.getProperty可以获取的参数
java.version Java 运行时环境版本 java.vendor Java 运行时环境供应商 java.vendor.url Java 供应商的 URL java.home Java 安装目 ...
- BZOJ 2560(子集DP+容斥原理)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 757 Solved: 497[Submit][Status][Discuss] ...
- kubernetes 项目
1:CI/CD Docker: Harbor Git Jenkins 2:微服务 istio
- 常用的pdf工具
https://www.ilovepdf.com/zh-cn https://smallpdf.com/cn/compress-pdf https://www.pdf2go.com/zh/compre ...
- 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分 整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...
- HTML5 内联 SVG
SVG 指可伸缩矢量图形 (Scalable Vector Graphics) SVG 用于定义用于网络的基于矢量的图形 SVG 使用 XML 格式定义图形 SVG 图像在放大或改变尺寸的情况下其图形 ...
- Android 提示: The connection to adb is down, and a severe error has occured.
今天早上打开Eclipse,一直提示 The connection to adb is down, and a severe error has occured,无法执行程序.重新启动Eclipse. ...