Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的高速查找算法,用于高速查找某个元素是否属于集合, 但不要求百分百的准确率。 Bloom filter通经常使用于爬虫的url去重,即推断某个url是否已经被爬过。 原理方面我引用一篇别人的文章。讲的比較清晰了。在此我不予赘述。 很多其它信息能够參考其论文。 看过几个php实现的BF,都觉得可读性不是非常强。 本文主要给出我对Bloom Filter的一个php实现。


原理:

<引用自这篇文章>

一. 实例

  为了说明Bloom Filter存在的重要意义,举一个实例:

  如果要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行非常可能会形成“环”。

为了避免形成“环”,就须要知道蜘蛛已经訪问过那些URL。

给一个URL,如何知道蜘蛛是否已经訪问过呢?略微想想,就会有例如以下几种方案:

  1. 将訪问过的URL保存到数据库。

  2. 用HashSet将訪问过的URL保存起来。那仅仅需接近O(1)的代价就能够查到一个URL是否被訪问过了。

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。

建立一个BitSet。将每一个URL经过一个哈希函数映射到某一位。

  方法1~3都是将訪问过的URL完整保存,方法4则仅仅标记URL的一个映射位。

  以上方法在数据量较小的情况下都能完美解决这个问题,可是当数据量变得非常庞大时问题就来了。

  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得非常低。

并且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。

就算仅仅有1亿个URL,每一个URL仅仅算50个字符,就须要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度仅仅有128Bit。SHA-1处理后也仅仅有160Bit,因此方法3例如法2节省了好几倍的内存。

  方法4消耗内存是相对较少的。但缺点是单一哈希函数发生冲突的概率太高。

还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要减少冲突发生的概率到1%。就要将BitSet的长度设置为URL个数的100倍。

  实质上上面的算法都忽略了一个重要的隐含条件:同意小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛訪问,而将它们错判为已訪问的代价是非常小的——大不了少抓几个网页呗。

二. Bloom Filter的算法

  废话讲到这里,以下引入本篇的主角——Bloom Filter。

事实上上面方法4的思想已经非常接近Bloom Filter了。方法四的致命缺点是冲突概率高。为了减少冲突的概念。Bloom Filter使用了多个哈希函数,而不是一个。

 Bloom Filter算法例如以下:

(1)初始化

  创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i。str),且h(i。str)的范围是0到m-1 。

(2) 检查字符串是否存在

 

以下是检查字符串str是否被BitSet记录过的过程:

  对于字符串str。分别计算h(1。str),h(2。str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若当中不论什么一位不为1则能够判定str一定没有被记录过。

若所有位都是1,则“觉得”字符串str存在。

  若一个字符串相应的Bit不全为1。则能够肯定该字符串一定没有被Bloom Filter记录过。

(这是显然的,由于字符串被记录过。其相应的二进制位肯定所有被设为1了)

  可是若一个字符串相应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(由于有可能该字符串的所有位都刚好是被其它字符串所相应)这样的将该字符串划分错的情况,称为false positive 。

(3) 删除字符串 :

字符串增加了就被不能删除了,由于删除会影响到其它字符串。实在须要删除字符串的能够使用Counting bloomfilter(CBF)。这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就能够实现删除字符串的功能了。

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每一个字符串跟k个bit相应。从而减少了冲突的概率。

三. Bloom Filter參数选择

(1)哈希函数选择

  哈希函数的选择对性能的影响应该是非常大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比較麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的參数。

(2)Bit数组大小选择

  哈希函数个数k、位数组大小m、增加的字符串数量n的关系能够參考參考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

  同一时候该文献还给出特定的k,m,n的出错概率。例如:依据參考文献,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。


实现:

<?php
///***************************************************************************
// *
// * Copyright (c) 2015 Baidu.com, Inc. All Rights Reserved
// *
// **************************************************************************/
//
//
//
///**
// * @file bloomfilter.php
// * @author Rachel Zhang(zrqsophia@sina.com)
// * @date 2015/07/24 18:48:57
// * @version $Revision$
// * @brief
// *
// **/ class BloomFilter{
var $m; # blocksize
var $n; # number of strings to hash
var $k; # number of hashing functions
var $bitset; # hashing block with size m function BloomFilter($mInit,$nInit){
$this->m = $mInit;
$this->n = $nInit;
$this->k = ceil(($this->m/$this->n)*log(2));
echo "number of functions: $this->k\n";
$this->bitset = array_fill(0, $this->m, false);
} function hashcode($str){
$res = array(); #put k hashing bit into $res
$seed = crc32($str);
mt_srand($seed); // set random seed, or mt_rand wouldn't provide same random arrays at different generation
for($i=0 ; $i<$this->k ; $i++){
$res[] = mt_rand(0,$this->m-1);
}
return $res;
} function addKey($key){
foreach($this->hashcode($key) as $codebit){
$this->bitset[$codebit]=true;
}
} function existKey($key){
$code=$this->hashcode($key);
foreach($code as $codebit){
if($this->bitset[$codebit]==false){
return false;
}
}
return true;
} } $bf = new BloomFilter(10,2);
$str_add1 = "test1";
$str_add2 = "test2";
$str_notadd3 = "test3";
//var_dump($bf->hashcode($str));
$bf->addKey($str_add1);
$bf->addKey($str_add2);
var_dump($bf->existKey($str_add1));
var_dump($bf->existKey($str_add2));
var_dump($bf->existKey($str_notadd3)); ?>

php实现Bloom Filter的更多相关文章

  1. Bloom Filter:海量数据的HashSet

    Bloom Filter一般用于数据的去重计算,近似于HashSet的功能:但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况. 1. 基本 ...

  2. 探索C#之布隆过滤器(Bloom filter)

    阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...

  3. Bloom Filter 布隆过滤器

    Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...

  4. Bloom Filter学习

    参考文献: Bloom Filters - the math    http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html    B ...

  5. 【转】探索C#之布隆过滤器(Bloom filter)

    原文:蘑菇先生,http://www.cnblogs.com/mushroom/p/4556801.html 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量 ...

  6. bloom filter

    Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员. 结    构 二进制 召回率 ...

  7. Bloom Filter 概念和原理

    Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素不一定 ...

  8. 【转】Bloom Filter布隆过滤器的概念和原理

    转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...

  9. [爬虫学习笔记]基于Bloom Filter的url去重模块UrlSeen

            Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载 ...

  10. bloom filter 详解[转]

    Bloom Filter概念和原理 焦萌 2007年1月27日 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.Bloom ...

随机推荐

  1. Matlab piecelin

    function v = piecelin(x,y,u) %PIECELIN Piecewise linear interpolation. % v = piecelin(x,y,u) finds t ...

  2. django 简单会议室预约(5)

    再来看看views.py的后半部分,对数据库的增删改查 #获取学院列表 def get_acad_list(): room_list = ConfeRoom.objects.all() #对数据库的操 ...

  3. pycharm 配置autopep8(亲测可行)

    autopep8是一个可以将Python代码自动排版为PEP8风格第三方包,使用它可以轻松地排版出格式优美整齐的代码.网络上有很多介绍如何在pycharm中配置autopep8的方案,但很多方案中还是 ...

  4. <link rel="shortcut icon" href="Xubuntu.ico" type="image/x-icon" /> <LINK href="Xubuntu.ico" rel="shortcut icon"> <link href="Xubuntu.ico" rel="B

    <link rel="shortcut icon" href="Xubuntu.ico" type="image/x-icon" /& ...

  5. 关于后台接收参数为null的问题之ajax--contentType

    ajax方法中的参数: contentType:发送至服务器时内容的编码类型,一般默认:application/x-www-form-urlencoded(适应大多数的场合) dataType:预期服 ...

  6. zico源代码分析(二) 数据读取和解析部分

    第一部分:分析篇 首先,看一下zico的页面,左侧是hostname panel,右侧是该主机对应的traces panel. 点击左侧zorka主机名,右侧panel会更新信息,在火狐浏览器中使用f ...

  7. JS原生选项卡 – 幻灯片效果

    <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...

  8. Ubuntu14.04中踩过的坑

    今天安装Ubuntu 14.0.4,因为需要使用python3,所以就直接配置如下:sudo rm /usr/bin/pythonsudo ln -s /usr/bin/python3.5  /usr ...

  9. 关于腾讯云server使用FTP具体配置教程

    本文文件夹:-------------------------------------------------------- [-] 腾讯云server介绍 关于腾讯云server使用感受 作为开发人 ...

  10. 一个IP建多个Web站点

      TCP端口法 由于各种原因,我们有时候需要在一个IP地址上建立多个web站点,在IIS5中,我们可能通过简单的设 置达到这个目标. 在IIS中,每个 Web 站点都具有唯一的.由三个部分组成的标识 ...