Unique Paths I,II
题目来自于:https://leetcode.com/problems/unique-paths/
:https://leetcode.com/problems/unique-paths-ii/
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。
典型的解法记住空间复杂度要在O(n)
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> paths(n,1);
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
paths[j]+=paths[j-1];
return paths[n-1];
}
};
另外一种是採用排列组合的方法来解答的
我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,
class Solution {
public:
int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
int large = max(m,n) -1;
int small = min(m,n) -1;
if (large == 0 || small == 0) return 1;
long int numerator = 1, denominator = 1;
for (int i=1; i<=small; ++i){
numerator *= large + i;
denominator *= i;
}
return numerator/denominator;
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
这里仅仅是加了障碍物而已。在障碍物的位子是0,
还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<int> paths(obstacleGrid[0].size(),0);
paths[0]=!obstacleGrid[0][0];
for(int i=0;i<obstacleGrid.size();++i)
for(int j=0;j<obstacleGrid[0].size();++j)
if(obstacleGrid[i][j]==1)
paths[j]=0;
else if(j-1>=0)
paths[j]+=paths[j-1];
return paths[obstacleGrid[0].size()-1];
}
};
Unique Paths I,II的更多相关文章
- LeetCode:Unique Paths I II
Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...
- LeetCode: Unique Paths I & II & Minimum Path Sum
Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- 62. Unique Paths && 63 Unique Paths II
https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...
- 【leetcode】Unique Paths II
Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...
- 61. Unique Paths && Unique Paths II
Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...
- LeetCode: Unique Paths II 解题报告
Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Fol ...
- 【LeetCode练习题】Unique Paths II
Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
随机推荐
- ACM_Jack拆炸弹(深搜)
Jack拆炸弹 Time Limit: 2000/1000ms (Java/Others) Problem Description: 在一个由n*n个格子组成的监狱里被恐怖份子安置了一个定时炸弹.其中 ...
- Spring Cloud (13) 服务网关-路由配置
传统路由配置 所谓传统路由配置方式就是在不依赖于服务发现机制情况下,通过在配置文件中具体制定每个路由表达式与服务实例的映射关系来实现API网关对外部请求的路由.没有Eureka服务治理框架帮助的时候, ...
- 单例模式在多线程环境下的lazy模式为什么要加两个if(instance==null)
刚才在看阿寻的博客”C#设计模式学习笔记-单例模式“时,发现了评论里有几个人在问单例模式在多线程环境下为什么lazy模式要加两个if进行判断,评论中的一个哥们剑过不留痕,给他们写了一个demo来告诉他 ...
- 以简单的例子谈一下C#中的COPY
周五晚上加班的时候做一堆ComboBox直接的联动,然后呢,这些cbo的DataSource都是同一个DataTable,当时写代码的时候求快也就没有太注意DataTable的绑定,然后就出了一些小问 ...
- jQuery制作顶部与左侧锚点板块定位功能带动画跳转特效
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- PHP采用301跳转方式防CC拦截
PHP采用301跳转方式防CC拦截 降低CC攻击的效果 <?php empty($_SERVER['HTTP_VIA']) or exit('Access Denied'); $second ...
- JS弹出子窗口
目的 在一个主窗口中,点击一个链接, 弹出一个子窗口 , 父窗口保留 在子窗口中点击关闭, 关闭子窗口. 子窗口的位置位于屏幕的中间 实现 main.html <!DOCTYPE html> ...
- kvm virt-install 使用小结
简介: virt-install 能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装. 此外,它能够基于串行控制台.VNC或SDL支持文本或图 ...
- linq排序之 根据文本 A-001-002-003 这种类型进行分割排序 空值放于最后
调用 List<string> data = new List<string>() { "D-001-001-001","A-001-004-00 ...
- git连接github mac
话不多说,终端里的代码直接复制过来 Last login: Fri May 17 21:45:31 on ttys000 liuduoduodeMacBook-Air:~ liuxiangyang$ ...