题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。

典型的解法记住空间复杂度要在O(n)

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> paths(n,1);
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
paths[j]+=paths[j-1];
return paths[n-1];
}
};

另外一种是採用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,

class Solution {
public:
int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
int large = max(m,n) -1;
int small = min(m,n) -1;
if (large == 0 || small == 0) return 1;
long int numerator = 1, denominator = 1;
for (int i=1; i<=small; ++i){
numerator *= large + i;
denominator *= i;
}
return numerator/denominator;
}
};

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里仅仅是加了障碍物而已。在障碍物的位子是0,

还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<int> paths(obstacleGrid[0].size(),0);
paths[0]=!obstacleGrid[0][0];
for(int i=0;i<obstacleGrid.size();++i)
for(int j=0;j<obstacleGrid[0].size();++j)
if(obstacleGrid[i][j]==1)
paths[j]=0;
else if(j-1>=0)
paths[j]+=paths[j-1];
return paths[obstacleGrid[0].size()-1];
}
};

Unique Paths I,II的更多相关文章

  1. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  2. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  3. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  5. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  6. 61. Unique Paths && Unique Paths II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  7. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  8. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  9. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

随机推荐

  1. 如何读取 Json 格式文件

    Json 源文件代码: [ { "Id": "0", "Name": "书籍", "Detail": ...

  2. Laravel5.1学习笔记17 数据库3 数据迁移

    介绍 建立迁移文件 迁移文件结构 执行迁移 回滚迁移 填写迁移文件  创建表 重命名/ 删除表 创建字段 修改字段 删除字段 建立索引 删除索引 外键约束 #介绍 Migrations are lik ...

  3. 移动web——bootstrap媒体对象

    基本模板 1.这些组件都具有在文本内容的左或右侧对齐的图片(就像博客评论或 Twitter 消息等) <div class="media"> <div class ...

  4. 移动web——bootstrap模板

    基本概念 1.bootstrap就是在媒体查询技术出现以后才开始出现的 2.此技术使响应式开发变得十分轻松,最大特点就是栅格系统(什么设备上如何显示)以及响应式工具(是否可见) 基本模板 <!D ...

  5. jQuery——尺寸位置

    获取宽:$(".box").width() 设置宽:$(".box").width(200) 获取高:$(".box").height() ...

  6. vm装xp安装成功后进入不了系统

    1.如果是用虚拟光驱,你肯定步骤是先新建的虚拟机,再安装的虚拟光驱,所以会出现这样的问题.(请先安装虚拟光驱,再新建虚拟机,再用虚拟光驱加载镜像文件,问题解决)2.如果是直接使用的镜像,那么在GHOS ...

  7. kickstart配置文件详解和system-config-kickstart (转载)

    kickstart是什么        许多系统管理员宁愿使用自动化的安装方法来安装红帽企业 Linux.为了满足这种需要,红帽创建了kickstart安装方法.使用kickstart,系统管理员可以 ...

  8. API开发管理平台eoLinker AMS 4.1版本发布:加入聚合空间,发布AMS专业版等

    eoLinker AMS是集API文档管理.API自动化测试.开发协作三位一体的综合API开发管理平台,是中国最大的在线API管理平台. eoLinker AMS 4.1更新内容: 1.新增" ...

  9. c# 图片资料

  10. 【XSY3413】Lambda - 造计算机初步——邱奇-图灵论题与lambda演算

    题意: 关于邱奇-图灵论题的一点思考 这道题起源于计算机科学史上一个非常著名的问题——邱奇-图灵论题,这个论题是可计算性理论的基石,关于它的思考与证明几乎贯穿了整个计算机科学史,涵盖了数学.算法理论. ...