一、题目:课程排表---210

课程表上有一些课,是必须有修学分的先后顺序的,必须要求在上完某些课的情况下才能上下一门。问是否有方案修完所有的课程?如果有的话请返回其中一个符合要求的路径,否则返回[].

例子1:

Input: 2, [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished  
             course 0. So the correct course order is [0,1].

例子2:

Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]

Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both    
             courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
             So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .

BFS思路:每次找入度为0的节点。

1、先建立图(邻接表)、和入度表。

2、循环n次(n为节点数),每次找到度为0 的节点(循环n次,从头开始找),加入path中,然后将其出度的节点的入度-=1(循环入度表)。

先是找到入度为0的节点:1

将1加入path中,然后是2,3节点的入度减去1,因为1已经被处理掉了。

此时度为0的节点是2,3。

将2,3加入path中,……

伪代码:

循环n次:

循环n次:

找入度为0的节点

将度为0节点加入path中

循环入度表:

将度为0节点的出度节点的入度节点-=1

代码:

from collections import defaultdict
def BFS(n,arr):
# n 为节点数,arr为【【u1,v1】,【u2,v2】……】,这里的u和v中,v是u的父节点。
if not arr:
return -1
graph = defaultdict(list)
indegree = defaultdict(int)
path = []
for u , v in arr:
graph[v].append(u)
indegree[u] += 1
for i in range(n):
zeroDegree = False
for j in range(n):
if indegree[j] == 0:
zeroDegree = True
break
if not zeroDegree:
return []
indegree[j] -= 1
path.append(j)
for val in graph[j]:
indegree[val] -= 1
return path
n= 5
arr = [[1,0],[2,0],[3,1],[3,2],[4,0]]
print(BFS(n,arr))

DFS思路:递归

  1、建立图

  2、循环n次,每次是遍历一个节点是否已经visited且合法地加入path中了,如果False不合法则直接返回【】。

  3、遍历一个节点时会将其后面的所有子节点都处理掉。

如,先是1,将1进行dfs处理【path中加入1,2,4,8,5】

  然后是2,将2进行dfs处理,已经visited过了,继续循环

  然后是3,将3进行dfs处理,没有visited,unkown状态,【path=【1,2,4,8,5】中加入【3,6,7】】

  然后是4……,后面都是visited过的,都直接跳过。

 

代码:

from collections import defaultdict
def findPath(n,arr):
if n == 0:
return []
graph = defaultdict(list)
for u , v in arr:
graph[v].append(u)
# 0为Unkown,1为visiting,2为visited
path = []
visited = [0] * n
for i in range(n):
if not DFS(graph,visited,path,i):
return []
return path
def DFS(graph,visited,path,i):
####i节点:其正在遍历,但它的子节点的子节点也是它,表示产生了有环,则return FALSE
if visited[i] == 1: return False
####i节点 :已经遍历过,后面已经没有节点了,return true
elif visited[i] == 2:return True
####表示正在遍历i节点
visited[i] = 1
for j in graph[i]:
if not DFS(graph,visited,path,j):
return False
path.append(i)
visited[i] = 2
return True n = 5
arr = [[1,0],[2,0],[3,1],[3,2],[4,0]]
print(findPath(n,arr))

二、题目二:课表安排【判断拓扑排序有无环】

现在你总共有 n 门课需要选,记为 0 到 n-1

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]

给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?

示例 1:

输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。

示例 2:

输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。

说明:

  1. 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法
  2. 你可以假定输入的先决条件中没有重复的边。

提示:

  1. 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
  2. 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
  3. 拓扑排序也可以通过 BFS 完成。

 代码:

from collections import defaultdict
class Solution(object):
def canFinish(self, numCourses, prerequisites):
"""
:type numCourses: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
if numCourses == 0:
return False
if len(prerequisites) == 0 or len(prerequisites) <= 1:
return True graph = defaultdict(list)
indegree = defaultdict(int)
for u , v in prerequisites:
graph[v].append(u)
indegree[u] += 1
###BFS,判断是否是拓扑排序
def BFS(n,graph,indegree,j):
zerodegree = False
for i in range(n):
if indegree[i] == 0:
zerodegree = True
break
if not zerodegree:
return False
indegree[i] -= 1
for k in graph[i]:
indegree[k] -= 1
return True
for j in range(numCourses):
if not BFS(numCourses,graph,indegree,j):
return False
return True
 
 

算法87-----DAG有向无环图的拓扑排序的更多相关文章

  1. CSU 1804: 有向无环图(拓扑排序)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...

  2. [转帖]算法精解:DAG有向无环图

    算法精解:DAG有向无环图 https://www.cnblogs.com/Evsward/p/dag.html DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用 ...

  3. JavaScript + SVG实现Web前端WorkFlow工作流DAG有向无环图

    一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也 ...

  4. 算法精解:DAG有向无环图

    DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用到区块链中,解决了当前区块链的哪些问题. 关键字:DAG,有向无环图,算法,背包,深度优先搜索,栈,BlockCh ...

  5. Python 随即生成DAG(有向无环图)

    给校队选拔赛出了道DAG上的背包问题,需要生成DAG数据. 最开始使用的方法是先随机生成再判环,如果有环就重新生成.这种方法得到DAG的概率随着点数和边数的增加而急速降低,为了一个DAG要生成很多次, ...

  6. pagerank算法在数学模型中的运用(有向无环图中节点排序)

    一.模型介绍 pagerank算法主要是根据网页中被链接数用来给网页进行重要性排名. 1.1模型解释 模型核心: a. 如果多个网页指向某个网页A,则网页A的排名较高. b. 如果排名高A的网页指向某 ...

  7. 题目1448:Legal or Not(有向无环图判断——拓扑排序问题)

    题目链接:http://ac.jobdu.com/problem.php?pid=1448 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  8. 图->有向无环图->拓扑排序

    文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...

  9. [转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图

    MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今 ...

随机推荐

  1. linux环境下安装varnish

    Varnish是一款高性能的开源HTTP加速器,挪威最大的在线报纸 Verdens Gang 使用3台Varnish代替了原来的12台Squid,性能比以前更好. sudo apt-get insta ...

  2. android 用java代码设置布局、视图View的宽度/高度或自适应

    在achat项目中,对话内容的长宽设置为自适应.可是假设文本内容太多,则宽度几乎相同布满,若自己说的和对方说的都非常多内容.则满屏都是文字.则不easy分辨出是来自别人说的还是自己说的.那么须要对本身 ...

  3. Python游戏server开发日记(一)目标

    到了新的环境.老大让我有空研究下一代server技术,作为一个长期任务. 新的server想达到的目标: 1.分布式系统,对象(Entity)之间的关系类似于Actor模型. 2.逻辑服务,是单进程. ...

  4. jQery总结01

    1 jQuery 的基本语法结构是什么? 2 $(document).ready() 与 window.onload 有什么区别? 3 如何实现 DOM 对象和 jQuery对象间的转化?

  5. mongodb 对内存的占用监控 ——mongostat,linux系统可用的内存是free + buffers + cached

    刚开始使用mongodb的时候,不太注意mongodb的内存使用,但通过查资料发现mongodb对内存的占用是巨大的,在本地测试服务器中,8G的内存居然被占用了45%.汗呀. 本文就来剖析一下mong ...

  6. 动态规划---状压dp

    状压dp,就是把动态规划之中的一个个状态用二进制表示,主要运用位运算. 这里有一道例题:蓝书P639猛兽军团1 [SCOI2005]互不侵犯 题目: 题目描述 在N×N的棋盘里面放K个国王,使他们互不 ...

  7. SPOJ GSS 系列

    来怒做GSS系列了: GSS1:https://www.luogu.org/problemnew/show/SP1043 这题就是维护一个 sum , mx , lmx , rmx,转移时用结构体就好 ...

  8. 【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格

    题目 弱化版题目的传送门([BZOJ2154]Crash的数字表格) 加强版题目的传送门([BZOJ2693]jzptab) 思路&解法 题目是要求: \(\sum\limits_{i = 1 ...

  9. 运行Django项目指定IP和端口

    默认IP和端口 python manage.py runserver 指定端口: python manage.py runserver 192.168.12.12:8080 此时会报错,我们需要修改配 ...

  10. BZOJ 3679 数位DP

    思路: f[i][j]表示i位数乘积为j的方案数 j的取值最多5000多种,那就开个map存一下好了 f[i][mp[k*rec[j]]]+=f[i-1][j]; //By SiriusRen #in ...