Aeroplane chess

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1628    Accepted Submission(s): 1103

Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the
faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.



There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is
no two or more flight lines start from the same grid.



Please help Hzz calculate the expected dice throwing times to finish the game.
 
Input
There are multiple test cases. 

Each test case contains several lines.

The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).

Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  

The input end with N=0, M=0. 
 
Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
 
Sample Input
2 0
8 3
2 4
4 5
7 8
0 0
 
Sample Output
1.1667
2.3441
 
Source

从0点走到n点。每一次掷筛子得x,向前走x步,有m条飞行通道,能够不算向前走,直接飞到。没有两个飞行线路从同一个点出发,问期望。

dp[i] = ∑(1/6*dp[i+j])+1 ;

对于飞行路线,由i到j的飞行路线,那么就意味着,当它到第i个位置的时候。他就到了第j个位置。dp[i] == dp[j]

从后先前dp,对于每个以计算的dp。有没有飞行路线能够到达这个点,假设有那么那个点的dp也就计算出了

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct node{
int u , v ;
int next ;
}p[2000];
int head[100000] , cnt ;
double dp[110000] , k[7];
void add(int u,int v)
{
p[cnt].u = u ;
p[cnt].v = v ;
p[cnt].next = head[v] ;
head[v] = cnt++ ;
}
int main()
{
int n , m , i , j , l , u , v ;
for(i = 1 ; i <= 6 ; i++)
k[i] = 1.0/6 ;
while(scanf("%d %d", &n, &m) && n+m != 0)
{
memset(head,-1,sizeof(head));
for(i = 0 ; i < n ; i++)
dp[i] = -1;
cnt = 0 ;
while(m--)
{
scanf("%d %d", &u, &v);
add(u,v);
}
for(i = n ; i <= n+6 ; i++)
dp[i] = 0 ;
for(l = head[n] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[n] ;
for(i = n-1 ; i >= 0 ; i--)
{
if( dp[i] != -1 )
{
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
continue ;
}
dp[i] = 1 ;
for(j = 1 ; j <= 6 ; j++)
dp[i] += k[j]*dp[i+j] ;
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
}
printf("%.4lf\n", dp[0]);
}
return 0;
}

hdu4405--Aeroplane chess(概率dp第七弹:飞行棋游戏--2012年网络赛)的更多相关文章

  1. HDU4405 Aeroplane chess (概率DP,转移)

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落 ...

  2. [hdu4405]Aeroplane chess(概率dp)

    题意:某人掷骰子,数轴上前进相应的步数,会有瞬移的情况,求从0到N所需要的期望投掷次数. 解题关键:期望dp的套路解法,一个状态可以转化为6个状态,则该状态的期望,可以由6个状态转化而来.再加上两个状 ...

  3. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  4. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  5. HDU4405 Aeroplane chess(期望dp)

    题意 抄袭自https://www.cnblogs.com/Paul-Guderian/p/7624039.html 正在玩飞行棋.输入n,m表示飞行棋有n个格子,有m个飞行点,然后输入m对u,v表示 ...

  6. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  7. HDU 4405 Aeroplane chess(概率dp,数学期望)

    题目 http://kicd.blog.163.com/blog/static/126961911200910168335852/ 根据里面的例子,就可以很简单的写出来了,虽然我现在还是不是很理解为什 ...

  8. 【HDU4405】Aeroplane chess [期望DP]

    Aeroplane chess Time Limit: 1 Sec  Memory Limit: 32 MB[Submit][Stataus][Discuss] Description Hzz lov ...

  9. hdu4405 Aeroplane chess

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. 简述vuex的数据传递流程

    简述vuex的数据传递流程 当组件进行数据修改的时候我们需要调用dispatch来触发actions里面的方法.actions里面的每个方法中都会有一个commit方法,当方法执行的时候会通过comm ...

  2. idea 编辑器 光标问题!(insert键)

    今天写代码不小心按了键盘的insert键,光标莫名闪退了 ,重新打开的时候发现 光标变成了  按了insert 的效果  ,简直无语的要命啊! 这敲代码太恶心了!怒搜资料 结果找到了解决办法! 1.打 ...

  3. POJ2142 The Balance (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意  你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...

  4. maven也是Apache开发的,也是java开发的。maven需要你本地系统JDK的支持

    1. 3. 添加 M2_HOME 和 MAVEN_HOME 添加 M2_HOME 和 MAVEN_HOME 环境变量到 Windows 环境变量,并将其指向你的 Maven 文件夹. M2_HOME ...

  5. Boost Log 基本使用方法

    Boost Log 基本使用方法 flyfish 2014-11-5 依据boost提供的代码演示样例,学习Boost Log 的基本使用方法 前提 boost版本号boost_1_56_0 演示样例 ...

  6. nyoj--236--心急的C小加(动态规划&&LIS)

    心急的C小加 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 C小加有一些木棒,它们的长度和质量都已经知道,需要一个机器处理这些木棒,机器开启的时候需要耗费一个单位的时间 ...

  7. 正睿NOIP赠送附加赛1

    T1:math 题目链接: http://zhengruioi.com/contest/156/problem/471 题解: 先讲讲我的乱搞做法.对于前面70%,我跑了背包.因为背包有后效性...我 ...

  8. [jzoj 5930] [NOIP2018模拟10.26】山花 解题报告 (质因数分类)

    题目链接: http://172.16.0.132/senior/#contest/show/2538/2 题目: 小S决定从某一个节点$u$开始对其子树中与$u$距离小于$K$的节点代表的花树进行采 ...

  9. pthread_cleanup_push vs Autorelease VS 异常处理

    黑幕背后的Autorelease http://www.cnblogs.com/feng9exe/p/7239552.html objc_autoreleasePoolPush的返回值正是这个哨兵对象 ...

  10. 快速傅里叶变换(Fast-Fourier Transform,FFT)

    数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...