Aeroplane chess

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1628    Accepted Submission(s): 1103

Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the
faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.



There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is
no two or more flight lines start from the same grid.



Please help Hzz calculate the expected dice throwing times to finish the game.
 
Input
There are multiple test cases. 

Each test case contains several lines.

The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).

Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  

The input end with N=0, M=0. 
 
Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
 
Sample Input
2 0
8 3
2 4
4 5
7 8
0 0
 
Sample Output
1.1667
2.3441
 
Source

从0点走到n点。每一次掷筛子得x,向前走x步,有m条飞行通道,能够不算向前走,直接飞到。没有两个飞行线路从同一个点出发,问期望。

dp[i] = ∑(1/6*dp[i+j])+1 ;

对于飞行路线,由i到j的飞行路线,那么就意味着,当它到第i个位置的时候。他就到了第j个位置。dp[i] == dp[j]

从后先前dp,对于每个以计算的dp。有没有飞行路线能够到达这个点,假设有那么那个点的dp也就计算出了

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct node{
int u , v ;
int next ;
}p[2000];
int head[100000] , cnt ;
double dp[110000] , k[7];
void add(int u,int v)
{
p[cnt].u = u ;
p[cnt].v = v ;
p[cnt].next = head[v] ;
head[v] = cnt++ ;
}
int main()
{
int n , m , i , j , l , u , v ;
for(i = 1 ; i <= 6 ; i++)
k[i] = 1.0/6 ;
while(scanf("%d %d", &n, &m) && n+m != 0)
{
memset(head,-1,sizeof(head));
for(i = 0 ; i < n ; i++)
dp[i] = -1;
cnt = 0 ;
while(m--)
{
scanf("%d %d", &u, &v);
add(u,v);
}
for(i = n ; i <= n+6 ; i++)
dp[i] = 0 ;
for(l = head[n] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[n] ;
for(i = n-1 ; i >= 0 ; i--)
{
if( dp[i] != -1 )
{
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
continue ;
}
dp[i] = 1 ;
for(j = 1 ; j <= 6 ; j++)
dp[i] += k[j]*dp[i+j] ;
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
}
printf("%.4lf\n", dp[0]);
}
return 0;
}

hdu4405--Aeroplane chess(概率dp第七弹:飞行棋游戏--2012年网络赛)的更多相关文章

  1. HDU4405 Aeroplane chess (概率DP,转移)

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落 ...

  2. [hdu4405]Aeroplane chess(概率dp)

    题意:某人掷骰子,数轴上前进相应的步数,会有瞬移的情况,求从0到N所需要的期望投掷次数. 解题关键:期望dp的套路解法,一个状态可以转化为6个状态,则该状态的期望,可以由6个状态转化而来.再加上两个状 ...

  3. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  4. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  5. HDU4405 Aeroplane chess(期望dp)

    题意 抄袭自https://www.cnblogs.com/Paul-Guderian/p/7624039.html 正在玩飞行棋.输入n,m表示飞行棋有n个格子,有m个飞行点,然后输入m对u,v表示 ...

  6. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  7. HDU 4405 Aeroplane chess(概率dp,数学期望)

    题目 http://kicd.blog.163.com/blog/static/126961911200910168335852/ 根据里面的例子,就可以很简单的写出来了,虽然我现在还是不是很理解为什 ...

  8. 【HDU4405】Aeroplane chess [期望DP]

    Aeroplane chess Time Limit: 1 Sec  Memory Limit: 32 MB[Submit][Stataus][Discuss] Description Hzz lov ...

  9. hdu4405 Aeroplane chess

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. Oracle expdp导出多表或表中的部分数据

    http://blog.itpub.net/16582684/viewspace-755072/

  2. 洛谷 P2298 Mzc和男家丁的游戏

    P2298 Mzc和男家丁的游戏 题目背景 mzc与djn的第二弹. 题目描述 mzc家很有钱(开玩笑),他家有n个男家丁(做过上一弹的都知道).他把她们召集在了一起,他们决定玩捉迷藏.现在mzc要来 ...

  3. echarts 柱状图和饼状图动态获取后台数据

    运用echarts来实现图表 1.首先下载echarts包  http://echarts.baidu.com/echarts2/doc/example.html,在这里我下载的是 2.将echart ...

  4. 字符串的HashCode可能相同

    字符串的HashCode可能相同 学习了:http://blog.csdn.net/hl_java/article/details/71511815

  5. MongoDB数据模型和索引学习总结

    MongoDB数据模型和索引学习总结 1. MongoDB数据模型: MongoDB数据存储结构: MongoDB针对文档(大文件採用GridFS协议)採用BSON(binary json,採用二进制 ...

  6. 关于Android的.so文件所须要知道的

    早期的Android系统差点儿仅仅支持ARMv5的CPU架构,你知道如今它支持多少种吗?7种. Android系统眼下支持以下七种不同的CPU架构:ARMv5.ARMv7 (从2010年起),x86 ...

  7. ubuntu修改顶栏颜色

    title: ubuntu修改顶栏颜色 toc: false date: 2018-09-29 19:14:01 categories: methods tags: Ubuntu 编辑shell主题的 ...

  8. zookeeper的节点类型

    Znode有两种类型: 短暂(ephemeral):客户端和服务器端断开连接后,创建的节点自己删除 持久(persistent):客户端和服务器端断开连接后,创建的节点不删除 2)Znode有四种形式 ...

  9. Python的Flask框架入门-Ubuntu

    全文请见tuts code:An Introduction to Python's Flask Framework Flask是Python一个小而强大的web框架.学起来简单,用起来也容易,能够帮你 ...

  10. 07:清泉-改(prime+堆)

    时间限制:  10000ms 单个测试点时间限制:  1000ms 内存限制:  512000kB 描述 华北电力大学可以抽象为一张有n个点m条边的无向图. 现在所有的边都断了. 修复每条边都有个不同 ...