51nod-活动安排问题
有若干个活动,第i个开始时间和结束时间是[Si,fi),只有一个教室,活动之间不能交叠,求最多安排多少个活动?
分析: 我们就是想提高教室地利用率,尽可能多地安排活动。
考虑容易想到的几种贪心策略:
(1) 开始最早的活动优先,目标是想尽早结束活动,让出教室。
然而, 这个显然不行,因为最早的活动可能很长,影响我们进行后面的活动。例如活动开始和结束时间分别为[0, 100), [1,2) ,[2, 3), [3, 4),[4,5],安排[0,100)的这个活动之后,其他活动无法安排,可是最优解是安排除它外的4个活动。
(2) 短活动优先, 目标也是尽量空出教室。但是不难构造如下反例: [0,5) [5,10) [3, 7), 这里[3,7)最短,但如果我们安排了[3,7),其它两个无法安排了。但是最优解显然是安排其它两个,而放弃[3,7),可见这个贪心策略也是不行的。
(3) 最少冲突的活动优先, 既然上面安排活动是想减少冲突,那么如果我们优先安排冲突最少的活动可以么?至少从(1)和(2)看来,这个策略是有效的。真是对的么? 尝试这个例子:
[0,2) [2,4) [4,6) [6,8)
[1,3) [1,3) [1,3) [3,5) [5,7) [5,7) [5,7)
[4,6)和也和4个活动冲突3个[5,7)和一个[3,5)
[6,8)和3个活动冲突——3个[5,7)
下面[1,3)和[5,7)每个都和5个活动冲突,
而[3,5)只和两个活动冲突——[2,4)和[4,6)。
那按照我们的策略应该先安排[3,5), 可是一旦选择了[3,5),我们最多只可能安排3个活动。
但明显第一行的4个活动都可以安排下来,所以这种策略也是不对的。
(4) 看似最不对的策略——结束时间越早的活动优先。这个策略是有效的,我们可以证明。假设最优解OPT中安排了m个活动,我们把这些活动也按照结束时间由小到大排序,显然是不冲突的。假设排好顺序后,这些活动是a(1) , a(2), a(3)….am
假设按照我们的贪心策略,选出的活动自然是按照结束时间排好顺序的,并且也都是不冲突的,这些活动是b(1), b(2) …b(n)
问题关键是,假设a(1) = b(1), a(2) = b(2)…. a(k) = b(k),但是a(k+1) != b(k+1),回答几个问题:
不会。因为b(k+1)的结束时间是最早的,即f(b(k+1)) <= f(a(k+1)),而a(k+2), a(k+3), …. a(m)的开始时间和结束时间都在f(a(k+1))之后,所以b(k+1)不在其中。
(2)b(k+1)和a(1), a(2), …. a(k) 冲突么?
不冲突,因为a(1), a(2), …. a(k)就是b(1), b(2), …. b(k)
(3)b(k+1)和a(k+2), a(k+3), …. a(m)冲突么?
不冲突,因为f(b(k+1)) <= f(a(k+1)),而a(k+2), a(k+3), …. a(m)的开始时间都在f(a(k+1))之后,更在f(b(k+1))之后。
因此我们可以把a(k+1) 换成b(k+1), 从而最优解和我们贪心得到的解多了一个相同的,经过一个一个替换,我们可以把最优解完全替换成我们贪心策略得到的解。 从而证明了这个贪心策略的最优性。最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。
第1行:1个数N,线段的数量(2 <= N <= 10000)
第2 - N + 1行:每行2个数,线段的起点和终点(-10^9 <= S,E <= 10^9)
输出最多可以选择的线段数量。
3
1 5
2 3
3 6
输出示例
2
const int maxn=1e4+10;
struct node
{
int x,y;
bool operator<(const node & a)const
{
return y<a.y;
}
}a[maxn];
int main()
{
ios::sync_with_stdio(false);
int n,k,ans;
while(cin>>n)
{
ans=1;
for(int i=0;i<n;i++)cin>>a[i].x>>a[i].y;
sort(a,a+n);
k=a[0].y;
for(int i=1;i<n;i++)
if(k<=a[i].x)
{
ans++;
k=a[i].y;
}
cout<<ans<<endl;
}
return 0;
}
51nod-活动安排问题的更多相关文章
- 51Nod 活动安排问题(排序+优先队列)
有若干个活动,第i个开始时间和结束时间是[Si,fi),同一个教室安排的活动之间不能交叠,求要安排所有活动,最少需要几个教室? Input 第一行一个正整数n (n <= 10000)代表活动的 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
- 51nod 1428 活动安排问题(优先队列)
1428 活动安排问题 首先按照开始时间从小到大排序. 其实只要维护一个结束时间的最小堆,每次比较开始时间和堆中最小时间的大小,如果比它大就放入堆中并且时间就要变成当前任务的结束时间, 否则就要新开一 ...
- C语言 活动安排问题
有若干个活动,第i个开始时间和结束时间是[Si,fi),只有一个教室,活动之间不能交叠,求最多安排多少个活动? #include <stdio.h> #include <stdlib ...
- hdu 2037简单贪心--活动安排问题
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子.该问题要求高效地安排一系列争用某一公共资源的活动.贪心算法提供了一个简单.漂亮的方法使得尽可能多的活动 ...
- 忙碌的Nova君 (活动安排问题、贪心算法)
题目描述 理论上,Nova君是个大闲人,但每天还是有一大堆事要干,大作业啦,创新杯啦,游戏啦,出题坑人啦,balabala......然而精力有限,Nova君同一时间只能做一件事,并不能一心二用.假设 ...
- hdu2037-----------贪心, 活动安排问题
http://acm.hdu.edu.cn/showproblem.php?pid=2037(简单贪心-----活动安排) #include<iostream> #include<a ...
- hdu2037今年暑假不AC(贪心,活动安排问题)
今年暑假不AC Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submi ...
- A - 活动安排问题(贪心)
A - 活动安排问题 有若干个活动,第i个开始时间和结束时间是[Si,fi),同一个教室安排的活动之间不能交叠,求要安排所有活动,最少需要几个教室? Input第一行一个正整数n (n <= ...
- [C++] 贪心算法之活动安排、背包问题
一.贪心算法的基本思想 在求解过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解. 从贪心算法的定义可以看出,贪心算法不是从整体上考 ...
随机推荐
- Spring Boot项目在Mac下使用Maven启动时碰到的神奇问题:Unregistering JMX-exposed beans on shutdown
错误如下: ➜ springboottest1 mvn spring-boot:run [INFO] Scanning for projects... [INFO] [INFO] ---------- ...
- STM32的IO配置点灯
1.led.c的详细的代码: /*----------------------------------------------------------*/ #include "led.h&q ...
- 【CSS】隐藏多行文本框Textarea在IE中的垂直滚动栏
在<[CSS]禁止Google浏览器同意定义调整多行文本框>(点击打开链接)中已经提及过怎样使多行文本框Textarea在一些DOM2的浏览器中固定下来. 这不,多行文本框Textarea ...
- ubuntu14.04 安装LNMP
新书上市<深入解析Android 5.0系统> 通常我们使用centos来组建LNMP,可是我们开发时多使用ubuntu的桌面版本号来调试,以下将具体介绍怎样在ubuntu上安装一套LNM ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- soapui icon以及resource的理解
https://www.soapui.org/getting-started/soapui-interface/main-window.html 以调用博客园的api为例 第一个是域名 第二个是res ...
- 深度学习利器:TensorFlow在智能终端中的应用——智能边缘计算,云端生成模型给移动端下载,然后用该模型进行预测
前言 深度学习在图像处理.语音识别.自然语言处理领域的应用取得了巨大成功,但是它通常在功能强大的服务器端进行运算.如果智能手机通过网络远程连接服务器,也可以利用深度学习技术,但这样可能会很慢,而且只有 ...
- Mac OS X10.9安装的Python2.7升级Python3.4步骤详解
Mac OS X10.9安装的Python2.7升级Python3.4步骤详解 Mac OS X10.9默认带了Python2.7,不过现在Python3.4.0出来了,如果想使用最新版本,赶紧升级下 ...
- BZOJ 3991 set维护dfs序
思路: set按照dfn排序 两点之间的距离可以O(logn)算出来 加一个点-> now ans+=dis(pre,now)+dis(now,next)-dis(pre-next); 删一个点 ...
- <a>和<table>标签的应用
今天介绍一下html中最重要的标签 标签分为 1.一般标签 如<img> <b></b>等 2.功能标签 如<a></a> 3.实体 如&a ...