函数式编程复习:

def map_test(func,array):
array_new=[]
for i in array:
array_new.append(func(i))
return array_new
print map_test(lambda x:x**2,range(10))
print map(lambda x:x**2,range(10)) def odd(num):
return num % 2
def filter_test(func,array):
array_new=[]
for i in array:
if func(i):
array_new.append(i)
return array_new print filter_test(odd,range(10))
print filter(odd,range(10)) def reduce_test(func,array,init):
l=list(array)
if init is None:
res=l.pop(0)
else:
res=init
for i in l:
res=func(res,i)
return res print reduce_test(lambda x,y:x+y,range(100),10)
print reduce(lambda x,y:x+y,range(100),10)

python装饰器

一:函数调用顺序:其他高级语言类似,Python 不允许在函数未声明之前,对其进行引用或者调用
错误示范:

def foo():
print 'in the foo'
bar() foo() 报错:
in the foo Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
foo()
File "<pyshell#12>", line 3, in foo
bar()
NameError: global name 'bar' is not defined
def foo():
print 'foo'
bar()
foo()
def bar():
print 'bar' 报错:NameError: global name 'bar' is not defined

正确示范:(注意,python为解释执行,函数foo在调用前已经声明了bar和foo,所以bar和foo无顺序之分)

def bar():
print 'in the bar'
def foo():
print 'in the foo'
bar() foo() def foo():
print 'in the foo'
bar()
def bar():
print 'in the bar'
foo()

二:高阶函数

满足下列条件之一就可成函数为高阶函数

  1. 某一函数当做参数传入另一个函数中

  2. 函数的返回值包含n个函数,n>0

高阶函数示范:

def bar():
print 'in the bar'
def foo(func):
res=func()
return res
foo(bar)

高阶函数的牛逼之处:

def foo(func):
return func print 'Function body is %s' %(foo(bar))
print 'Function name is %s' %(foo(bar).func_name)
foo(bar)()
#foo(bar)() 等同于bar=foo(bar)然后bar()
bar=foo(bar)
bar()

三:内嵌函数和变量作用域:

定义:在一个函数体内创建另外一个函数,这种函数就叫内嵌函数(基于python支持静态嵌套域)

函数嵌套示范:

def foo():
def bar():
print 'in the bar' bar() foo()
# bar()

局部作用域和全局作用域的访问顺序

x=0
def grandpa():
# x=1
def dad():
x=2
def son():
x=3
print x
son()
dad()
grandpa()

局部变量修改对全局变量的影响

y=10
# def test():
# y+=1
# print y def test():
# global y
y=2
print y test()
print y def dad():
m=1
def son():
n=2
print '--->',m + n
print '-->',m
son()
dad()

四:闭包:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是 closure

def counter(start_num=0):
count=[start_num]
def incr():
count[0]+=1
return count[0]
return incr print counter()
print counter()()
print counter()()
c=counter()
print c()
print c()

五:内嵌函数+高阶函数+闭包=》装饰器

预热两个范例:

范例一:函数参数固定

def decorartor(func):
def wrapper(n):
print 'starting'
func(n)
print 'stopping'
return wrapper def test(n):
print 'in the test arg is %s' %n decorartor(test)('alex')

范例二:函数参数不固定

def decorartor(func):
def wrapper(*args,**kwargs):
print 'starting'
func(*args,**kwargs)
print 'stopping'
return wrapper def test(n,x=1):
print 'in the test arg is %s' %n decorartor(test)('alex',x=2)

1.无参装饰器

import time
def decorator(func):
def wrapper(*args,**kwargs):
start=time.time()
func(*args,**kwargs)
stop=time.time()
print 'run time is %s ' %(stop-start)
print timeout
return wrapper @decorator
def test(list_test):
for i in list_test:
time.sleep(0.1)
print '-'*20,i #decorator(test)(range(10))
test(range(10))

2. 有参装饰器

import time
def timer(timeout=0):
def decorator(func):
def wrapper(*args,**kwargs):
start=time.time()
func(*args,**kwargs)
stop=time.time()
print 'run time is %s ' %(stop-start)
print timeout
return wrapper
return decorator
@timer(2)
def test(list_test):
for i in list_test:
time.sleep(0.1)
print '-'*20,i #timer(timeout=10)(test)(range(10))
test(range(10))

六:装饰器应用案例:

装饰器功能:函数超时则终止

# -*- coding: utf-8 -*-
from threading import Thread
import time class TimeoutException(Exception):
pass ThreadStop = Thread._Thread__stop#获取私有函数 def timelimited(timeout):
def decorator(function):
def decorator2(*args,**kwargs):
class TimeLimited(Thread):
def __init__(self,_error= None,):
Thread.__init__(self)
self._error = _error def run(self):
try:
self.result = function(*args,**kwargs)
except Exception,e:
self._error =e def _stop(self):
if self.isAlive():
ThreadStop(self) t = TimeLimited()
t.start()
t.join(timeout) if isinstance(t._error,TimeoutException):
t._stop()
raise TimeoutException('timeout for %s' % (repr(function))) if t.isAlive():
t._stop()
raise TimeoutException('timeout for %s' % (repr(function))) if t._error is None:
return t.result return decorator2
return decorator @timelimited(2)
def fn_1(secs):
time.sleep(secs)
return 'Finished' if __name__ == "__main__":
print fn_1(4)

复习:

什么是函数?
为什么要用函数?
函数的分类:内置函数与自定义函数
如何自定义函数
语法
定义有参数函数,及有参函数的应用场景
定义无参数函数,及无参函数的应用场景
定义空函数,及空函数的应用场景
调用函数
如何调用函数
函数的返回值
函数参数的应用:形参和实参,位置参数,关键字参数,默认参数,*args,**kwargs
高阶函数(函数对象)
函数嵌套
作用域与名称空间
装饰器
迭代器与生成器及协程函数
三元运算,列表解析、生成器表达式
函数的递归调用
内置函数
面向过程编程与函数式编程 本节课程重点
一:为何用函数之不使用函数的问题
#组织结构不清晰
#代码冗余
#无法统一管理且维护难度大
二:函数分类:
1. 内置函数
2. 自定义函数
三:为何要定义函数
函数即变量,变量必须先定义后使用,未定义而直接引用函数,就相当于在引用一个不存在的变量名
代码演示?
四:定义函数都干了哪些事?
只检测语法,不执行代码
五:如何定义函数(函数名要能反映其意义)
def ...
六:定义函数的三种形式
无参:应用场景仅仅只是执行一些操作,比如与用户交互,打印
有参:需要根据外部传进来的参数,才能执行相应的逻辑,比如统计长度,求最大值最小值
空函数:设计代码结构
七 :函数的调用
1 先找到名字
2 根据名字调用代码
  函数的返回值?
  0->None
  1->返回1个值
  多个->元组
  什么时候该有?
    调用函数,经过一系列的操作,最后要拿到一个明确的结果,则必须要有返回值
    通常有参函数需要有返回值,输入参数,经过计算,得到一个最终的结果
  什么时候不需要有?
    调用函数,仅仅只是执行一系列的操作,最后不需要得到什么结果,则无需有返回值
    通常无参函数不需要有返回值
八:函数调用的三种形式
1 语句形式:foo()
2 表达式形式:3*len('hello')
4 当中另外一个函数的参数:range(len('hello'))
九:函数的参数:
1 形参和实参定义
2 形参即变量名,实参即变量值,函数调用则将值绑定到名字上,函数调用结束,解除绑定
3 具体应用
位置参数:按照从左到右的顺序定义的参数
位置形参:必选参数
位置实参:按照位置给形参传值
    关键字参数:按照key=value的形式定义实参
无需按照位置为形参传值
注意的问题:
1. 关键字实参必须在位置实参右面
2. 对同一个形参不能重复传值
    默认参数:形参在定义时就已经为其赋值
可以传值也可以不传值,经常需要变得参数定义成位置形参,变化较小的参数定义成默认参数(形参)
注意的问题:
1. 只在定义时赋值一次
2. 默认参数的定义应该在位置形参右面
3. 默认参数通常应该定义成不可变类型
    可变长参数:
针对实参在定义时长度不固定的情况,应该从形参的角度找到可以接收可变长实参的方案,这就是可变长参数(形参)
而实参有按位置和按关键字两种形式定义,针对这两种形式的可变长,形参也应该有两种解决方案,分别是*args,**kwargs
        ===========*args===========
def foo(x,y,*args):
print(x,y)
print(args)
foo(1,2,3,4,5) def foo(x,y,*args):
print(x,y)
print(args)
foo(1,2,*[3,4,5]) def foo(x,y,z):
print(x,y,z)
foo(*[1,2,3]) ===========**kwargs===========
def foo(x,y,**kwargs):
print(x,y)
print(kwargs)
foo(1,y=2,a=1,b=2,c=3) def foo(x,y,**kwargs):
print(x,y)
print(kwargs)
foo(1,y=2,**{'a':1,'b':2,'c':3}) def foo(x,y,z):
print(x,y,z)
foo(**{'z':1,'x':2,'y':3}) ===========*args+**kwargs=========== def foo(x,y):
print(x,y) def wrapper(*args,**kwargs):
print('====>')
foo(*args,**kwargs)
    命名关键字参数:*后定义的参数,必须被传值(有默认值的除外),且必须按照关键字实参的形式传递
可以保证,传入的参数中一定包含某些关键字
def foo(x,y,*args,a=1,b,**kwargs):
print(x,y)
print(args)
print(a)
print(b)
print(kwargs) foo(1,2,3,4,5,b=3,c=4,d=5)
结果:
1
2
(3, 4, 5)
1
3
{'c': 4, 'd': 5}
十 阶段性练习

  1、写函数,,用户传入修改的文件名,与要修改的内容,执行函数,完成批了修改操作

       2、写函数,计算传入字符串中【数字】、【字母】、【空格] 以及 【其他】的个数

3、写函数,判断用户传入的对象(字符串、列表、元组)长度是否大于5。

4、写函数,检查传入列表的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。

5、写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者。

6、写函数,检查字典的每一个value的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。
       dic = {"k1": "v1v1", "k2": [11,22,33,44]}
       PS:字典中的value只能是字符串或列表

#题目一
def modify_file(filename,old,new):
import os
with open(filename,'r',encoding='utf-8') as read_f,\
open('.bak.swap','w',encoding='utf-8') as write_f:
for line in read_f:
if old in line:
line=line.replace(old,new)
write_f.write(line)
os.remove(filename)
os.rename('.bak.swap',filename) modify_file('/Users/jieli/PycharmProjects/爬虫/a.txt','alex','SB') #题目二
def check_str(msg):
res={
'num':0,
'string':0,
'space':0,
'other':0,
}
for s in msg:
if s.isdigit():
res['num']+=1
elif s.isalpha():
res['string']+=1
elif s.isspace():
res['space']+=1
else:
res['other']+=1
return res res=check_str('hello name:aSB passowrd:alex3714')
print(res) #题目三:略 #题目四
def func1(seq):
if len(seq) > 2:
seq=seq[0:2]
return seq
print(func1([1,2,3,4])) #题目五
def func2(seq):
return seq[::2]
print(func2([1,2,3,4,5,6,7])) #题目六
def func3(dic):
d={}
for k,v in dic.items():
if len(v) > 2:
d[k]=v[0:2]
return d
print(func3({'k1':'abcdef','k2':[1,2,3,4],'k3':('a','b','c')}))
=======================本节课新内容==========================
一:函数对象:函数是第一类对象,即函数可以当作数据传递
1 可以被引用
2 可以当作参数传递
3 返回值可以是函数
3 可以当作容器类型的元素
#利用该特性,优雅的取代多分支的if
def foo():
print('foo') def bar():
print('bar') dic={
'foo':foo,
'bar':bar,
}
while True:
choice=input('>>: ').strip()
if choice in dic:
dic[choice]() 二:函数的嵌套
1 函数的嵌套调用
def max(x,y):
return x if x > y else y def max4(a,b,c,d):
res1=max(a,b)
res2=max(res1,c)
res3=max(res2,d)
return res3
print(max4(1,2,3,4)) 2 函数的嵌套定义
def f1():
def f2():
def f3():
print('from f3')
f3()
f2() f1()
f3() #报错 三 名称空间和作用域:
名称空间:存放名字的地方,三种名称空间,(之前遗留的问题x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方)
加载顺序是?
名字的查找顺序?(在全局无法查看局部的,在局部可以查看全局的)
        # max=1
def f1():
# max=2
def f2():
# max=3
print(max)
f2()
f1()
print(max)

        作用域即范围
     - 全局范围:全局存活,全局有效
     - 局部范围:临时存活,局部有效
- 作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关,如下
      x=1
      def f1():
      def f2():
      print(x)
      return f2       def f3(func):
      x=2
      func()       f3(f1())

        查看作用域:globals(),locals()

        global
nonlocal LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__
locals 是函数内的名字空间,包括局部变量和形参
enclosing 外部嵌套函数的名字空间(闭包中常见)
globals 全局变量,函数定义所在模块的名字空间
builtins 内置模块的名字空间 四:闭包:内部函数包含对外部作用域而非全局作用域的引用
提示:之前我们都是通过参数将外部的值传给函数,闭包提供了另外一种思路,包起来喽,包起呦,包起来哇 def counter():
n=0
def incr():
nonlocal n
x=n
n+=1
return x
return incr c=counter()
print(c())
print(c())
print(c())
print(c.__closure__[0].cell_contents) #查看闭包的元素 闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域
应用领域:延迟计算(原来我们是传参,现在我们是包起来)
from urllib.request import urlopen def index(url):
def get():
return urlopen(url).read()
return get baidu=index('http://www.baidu.com')
print(baidu().decode('utf-8')) 五: 装饰器(闭包函数的一种应用场景) 1 为何要用装饰器:
开放封闭原则:对修改封闭,对扩展开放 2 什么是装饰器
装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。
强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式
装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能 3. 先看简单示范
import time
def timmer(func):
def wrapper(*args,**kwargs):
start_time=time.time()
res=func(*args,**kwargs)
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))
return res
return wrapper @timmer
def foo():
time.sleep(3)
print('from foo')
foo() 4
def auth(driver='file'):
def auth2(func):
def wrapper(*args,**kwargs):
name=input("user: ")
pwd=input("pwd: ") if driver == 'file':
if name == 'egon' and pwd == '123':
print('login successful')
res=func(*args,**kwargs)
return res
elif driver == 'ldap':
print('ldap')
return wrapper
return auth2 @auth(driver='file')
def foo(name):
print(name) foo('egon') 5 装饰器语法:
被装饰函数的正上方,单独一行
@deco1
@deco2
@deco3
def foo():
pass foo=deco1(deco2(deco3(foo)))   6 装饰器补充:wraps
from functools import wraps

def deco(func):
@wraps(func) #加在最内层函数正上方
def wrapper(*args,**kwargs):
return func(*args,**kwargs)
return wrapper @deco
def index():
'''哈哈哈哈'''
print('from index') print(index.__doc__)

7 装饰器练习

一:编写函数,(函数执行的时间是随机的)
二:编写装饰器,为函数加上统计时间的功能
三:编写装饰器,为函数加上认证的功能

四:编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件),要求登录成功一次,后续的函数都无需再输入用户名和密码
注意:从文件中读出字符串形式的字典,可以用eval('{"name":"egon","password":"123"}')转成字典格式

五:编写装饰器,为多个函数加上认证功能,要求登录成功一次,在超时时间内无需重复登录,超过了超时时间,则必须重新登录

六:编写下载网页内容的函数,要求功能是:用户传入一个url,函数返回下载页面的结果

七:为题目五编写装饰器,实现缓存网页内容的功能:
具体:实现下载的页面存放于文件中,如果文件内有值(文件大小不为0),就优先从文件中读取网页内容,否则,就去下载,然后存到文件中

扩展功能:用户可以选择缓存介质/缓存引擎,针对不同的url,缓存到不同的文件中

八:还记得我们用函数对象的概念,制作一个函数字典的操作吗,来来来,我们有更高大上的做法,在文件开头声明一个空字典,然后在每个函数前加上装饰器,完成自动添加到字典的操作

九 编写日志装饰器,实现功能如:一旦函数f1执行,则将消息2017-07-21 11:12:11 f1 run写入到日志文件中,日志文件路径可以指定
注意:时间格式的获取
import time
time.strftime('%Y-%m-%d %X')

#题目一:略
#题目二:略
#题目三:略
#题目四:
db='db.txt'
login_status={'user':None,'status':False}
def auth(auth_type='file'):
def auth2(func):
def wrapper(*args,**kwargs):
if login_status['user'] and login_status['status']:
return func(*args,**kwargs)
if auth_type == 'file':
with open(db,encoding='utf-8') as f:
dic=eval(f.read())
name=input('username: ').strip()
password=input('password: ').strip()
if name in dic and password == dic[name]:
login_status['user']=name
login_status['status']=True
res=func(*args,**kwargs)
return res
else:
print('username or password error')
elif auth_type == 'sql':
pass
else:
pass
return wrapper
return auth2 @auth()
def index():
print('index') @auth(auth_type='file')
def home(name):
print('welcome %s to home' %name) # index()
# home('egon') #题目五
import time,random
user={'user':None,'login_time':None,'timeout':0.000003,} def timmer(func):
def wrapper(*args,**kwargs):
s1=time.time()
res=func(*args,**kwargs)
s2=time.time()
print('%s' %(s2-s1))
return res
return wrapper def auth(func):
def wrapper(*args,**kwargs):
if user['user']:
timeout=time.time()-user['login_time']
if timeout < user['timeout']:
return func(*args,**kwargs)
name=input('name>>: ').strip()
password=input('password>>: ').strip()
if name == 'egon' and password == '':
user['user']=name
user['login_time']=time.time()
res=func(*args,**kwargs)
return res
return wrapper @auth
def index():
time.sleep(random.randrange(3))
print('welcome to index') @auth
def home(name):
time.sleep(random.randrange(3))
print('welcome %s to home ' %name) index()
home('egon') #题目六:略
#题目七:简单版本
import requests
import os
cache_file='cache.txt'
def make_cache(func):
def wrapper(*args,**kwargs):
if not os.path.exists(cache_file):
with open(cache_file,'w'):pass if os.path.getsize(cache_file):
with open(cache_file,'r',encoding='utf-8') as f:
res=f.read()
else:
res=func(*args,**kwargs)
with open(cache_file,'w',encoding='utf-8') as f:
f.write(res)
return res
return wrapper @make_cache
def get(url):
return requests.get(url).text # res=get('https://www.python.org') # print(res) #题目七:扩展版本
import requests,os,hashlib
engine_settings={
'file':{'dirname':'./db'},
'mysql':{
'host':'127.0.0.1',
'port':3306,
'user':'root',
'password':''},
'redis':{
'host':'127.0.0.1',
'port':6379,
'user':'root',
'password':''},
} def make_cache(engine='file'):
if engine not in engine_settings:
raise TypeError('egine not valid')
def deco(func):
def wrapper(url):
if engine == 'file':
m=hashlib.md5(url.encode('utf-8'))
cache_filename=m.hexdigest()
cache_filepath=r'%s/%s' %(engine_settings['file']['dirname'],cache_filename) if os.path.exists(cache_filepath) and os.path.getsize(cache_filepath):
return open(cache_filepath,encoding='utf-8').read() res=func(url)
with open(cache_filepath,'w',encoding='utf-8') as f:
f.write(res)
return res
elif engine == 'mysql':
pass
elif engine == 'redis':
pass
else:
pass return wrapper
return deco @make_cache(engine='file')
def get(url):
return requests.get(url).text # print(get('https://www.python.org'))
print(get('https://www.baidu.com')) #题目八
route_dic={} def make_route(name):
def deco(func):
route_dic[name]=func
return deco
@make_route('select')
def func1():
print('select') @make_route('insert')
def func2():
print('insert') @make_route('update')
def func3():
print('update') @make_route('delete')
def func4():
print('delete') print(route_dic) #题目九
import time
import os def logger(logfile):
def deco(func):
if not os.path.exists(logfile):
with open(logfile,'w'):pass def wrapper(*args,**kwargs):
res=func(*args,**kwargs)
with open(logfile,'a',encoding='utf-8') as f:
f.write('%s %s run\n' %(time.strftime('%Y-%m-%d %X'),func.__name__))
return res
return wrapper
return deco @logger(logfile='aaaaaaaaaaaaaaaaaaaaa.log')
def index():
print('index') index()
    六:迭代器
迭代的概念:重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值
# while True: #只满足重复,因而不是迭代
# print('====>') #迭代
l=[1,2,3]
count=0
while count < len(l): #只满足重复,因而不是迭代
print('====>',l[count])
count+=1 为何要有迭代器?
可迭代的对象?
哪些是可迭代对象?
迭代器?
l={'a':1,'b':2,'c':3,'d':4,'e':5}
i=l.__iter__() #等于i=iter(l) print(next(i))
print(next(i))
print(next(i))
StopIteration? for循环 迭代器的优缺点:
优点:
提供统一的且不依赖于索引的迭代方式
惰性计算,节省内存
缺点:
无法获取长度
一次性的,只能往后走,不能往前退 迭代器协议   练习:判断以下对象哪个是可迭代对象,哪个是迭代器对象

s='hello'
l=[1,2,3,4]
t=(1,2,3)
d={'a':1}
set={1,2,3}
f=open('a.txt')


   七 生成器
yield:
把函数做成迭代器
对比return,可以返回多次值,挂起函数的运行状态 # def foo():
# return 1
# return 2
# return 3
#
# res=foo()
# print(res) def foo():
yield 1
yield 2
yield 3 res=foo()
print(res) from collections import Iterable,Iterator
print(isinstance(res,Iterator)) print(next(res))
print(next(res))
print(next(res)) 应用一:
def counter(n):
print('start')
i=0
while i < n:
yield i
i+=1
print('end') c=counter(5)
# print(next(c)) #0
# print(next(c)) #1
# print(next(c)) #2
# print(next(c)) #3
# print(next(c)) #4
# print(next(c)) #5 --->没有yield,抛出StopIteration for i in counter(5):
print(i) 应用二:管道tail -f a.txt |grep 'python'
import time
def tail(filepath):
with open(filepath,encoding='utf-8') as f:
f.seek(0,2)
while True:
line=f.readline()
if line:
yield line
else:
time.sleep(0.5) def grep(pattern,lines):
for line in lines:
if pattern in line:
yield line for i in grep('python',tail('a.txt')):
print(i) #协程函数
def eater(name):
print('%s说:我开动啦' %name)
food_list=[]
while True:
food=yield food_list
food_list.append(food)
print('%s 吃了 %s' %(name,food)) e=eater('egon')
e.send(None) #next(e) #初始化装饰器,
e.close() #关闭 面向过程编程:
import os
def init(func):
def wrapper(*args,**kwargs):
g=func(*args,**kwargs)
next(g)
return g
return wrapper def search(file_dir,target):
for par_dir,_,files in os.walk(file_dir):
for file in files:
filepath='%s\%s' %(par_dir,file)
target.send(filepath) @init
def opener(target):
while True:
filepath=yield
with open(filepath) as f:
target.send((f,filepath))
@init
def cat(target):
while True:
res=False
f,filepath=yield res
for line in f:
print(line,end='')
res=target.send((line,filepath))
if res:
break @init
def grep(pattern,target):
res = False
while True:
line,filepath=yield res
res=False
if pattern in line:
res=True
target.send(filepath) @init
def printer():
while True:
filepath=yield
print(filepath) search(r'C:\Users\Administrator\PycharmProjects\test\字符编码\a',
opener(cat(grep('python',printer()))))
#注意:target.send(...)在拿到target的返回值后才算执行结束
import os def init(func):
def wrapper(*args,**kwargs):
g=func(*args,**kwargs)
next(g)
return g
return wrapper
@init
def search(target):
while True:
search_dir=yield
for par_dir,_,files in os.walk(search_dir):
for file in files:
file_abs_path=r'%s\%s' %(par_dir,file)
# print(file_abs_path)
target.send(file_abs_path)
@init
def opener(target):
while True:
file_abs_path=yield
with open(file_abs_path,encoding='utf-8') as f:
target.send((file_abs_path,f))
@init
def cat(target):
while True:
file_abs_path,f=yield
print('检索文件',file_abs_path)
for line in f:
tag=target.send((file_abs_path,line))
print('检索文件的行: %s' %line)
if tag:
break @init
def grep(pattern,target):
tag=False
while True:
file_abs_path,line=yield tag
tag=False
if pattern in line:
tag=True
target.send(file_abs_path)
@init
def printer():
while True:
file_abs_path=yield
print('过滤出的结果=========>',file_abs_path) search_dir=r'C:\Users\Administrator\PycharmProjects\test\函数备课\a'
e=search(opener(cat(grep('python',printer()))))
e.send(search_dir) 备注

备注

八:三元表达式,列表推导式,生成器表达式

==============================#三元表达式
name='alex'
name='linhaifeng'
res='SB' if name == 'alex' else 'shuai'
print(res)

==============================列表推导式
------------------1:引子
生一筐鸡蛋
egg_list=[]
for i in range(10):
egg_list.append('鸡蛋%s' %i)

egg_list=['鸡蛋%s' %i for i in range(10)] #列表解析

------------------2:语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
if condition1:
for item2 in iterable2:
if condition2
...
for itemN in iterableN:
if conditionN:
res.append(expression)

------------------3:优点
方便,改变了编程习惯,声明式编程

------------------4:应用
l1=[3,-4,-1,5,7,9]

[i**i for i in l1]

[i for i in l1 if i >0]

s='egon'
[(i,j) for i in l1 if i>0 for j in s] #元组合必须加括号[i,j ...]非法

==============================生成器表达式
------------------1:引子
生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
egg_list=[]
for i in range(10):
egg_list.append('鸡蛋%s' %i)

chicken=('鸡蛋%s' %i for i in range(10))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
'鸡蛋5'

------------------2:语法
语法与列表推导式类似,只是[]->()

(expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
)

------------------3:优点
省内存,一次只产生一个值在内存中

------------------4:应用
读取一个大文件的所有内容,并且处理行
f=open('a.txt')
g=(line.strip() for line in f)

list(g) #因g可迭代,因而可以转成列表

------------------5:示例
#一
with open('a.txt') as f:
    print(max(len(line) for line in f))
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字节数,为何得到的值为0?

#二
print(max(len(line) for line in open('a.txt')))
print(sum(len(line) for line in open('a.txt')))

#三
with open('a.txt') as f:
    g=(len(line) for line in f)
print(sum(g)) #为何报错?

==============================声明式编程
文件a.txt内容
apple 10 3
tesla 100000 1
mac 3000 2
lenovo 30000 3
chicken 10 3

f=open('a.py')
#求花了多少钱
g=(line.split() for line in f)

sum(float(price)*float(count) for _,price,count in g)

模拟数据库查询
>>> f=open('a.txt')
>>> g=(line.split() for line in f)
>>> goods_l=[{'name':n,'price':p,'count':c} for n,p,c in g]

过滤查询
>>> goods_l=[{'name':n,'price':p,'count':c} for n,p,c in g if float(p) > 10000]

  九:匿名函数lambda

匿名就是没有名字
def func(x,y,z=1):
return x+y+z

匿名
lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
func=lambda x,y,z=1:x+y+z 
func(1,2,3)
#让其有名字就没有意义

有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能

匿名函数:一次性使用,随时随时定义

应用:max,min,sorted,map,reduce,filter

  十 内建函数

注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型

字典的运算:最小值,最大值,排序
salaries={
'egon':3000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
} 迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
'yuanhao'
>>> min(salaries)
'alex' 可以取values,来比较
>>> max(salaries.values())
>>> min(salaries.values())
但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
'alex'
>>> min(salaries,key=lambda k:salary[k])
'yuanhao' 也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys()) 先比较值,值相同则比较键
>>> max(salaries_and_names)
(100000000, 'alex') salaries_and_names是迭代器,因而只能访问一次
>>> min(salaries_and_names)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: min() arg is an empty sequence sorted(iterable,key=None,reverse=False)
#字符串可以提供的参数 's' None
>>> format('some string','s')
'some string'
>>> format('some string')
'some string' #整形数值可以提供的参数有 'b' 'c' 'd' 'o' 'x' 'X' 'n' None
>>> format(3,'b') #转换成二进制
''
>>> format(97,'c') #转换unicode成字符
'a'
>>> format(11,'d') #转换成10进制
''
>>> format(11,'o') #转换成8进制
''
>>> format(11,'x') #转换成16进制 小写字母表示
'b'
>>> format(11,'X') #转换成16进制 大写字母表示
'B'
>>> format(11,'n') #和d一样
''
>>> format(11) #默认和d一样
'' #浮点数可以提供的参数有 'e' 'E' 'f' 'F' 'g' 'G' 'n' '%' None
>>> format(314159267,'e') #科学计数法,默认保留6位小数
'3.141593e+08'
>>> format(314159267,'0.2e') #科学计数法,指定保留2位小数
'3.14e+08'
>>> format(314159267,'0.2E') #科学计数法,指定保留2位小数,采用大写E表示
'3.14E+08'
>>> format(314159267,'f') #小数点计数法,默认保留6位小数
'314159267.000000'
>>> format(3.14159267000,'f') #小数点计数法,默认保留6位小数
'3.141593'
>>> format(3.14159267000,'0.8f') #小数点计数法,指定保留8位小数
'3.14159267'
>>> format(3.14159267000,'0.10f') #小数点计数法,指定保留10位小数
'3.1415926700'
>>> format(3.14e+1000000,'F') #小数点计数法,无穷大转换成大小字母
'INF' #g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp<p,则采用小数计数法,并保留p-1-exp位小数,否则按小数计数法计数,并按p-1保留小数位数
>>> format(0.00003141566,'.1g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点
'3e-05'
>>> format(0.00003141566,'.2g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留1位小数点
'3.1e-05'
>>> format(0.00003141566,'.3g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留2位小数点
'3.14e-05'
>>> format(0.00003141566,'.3G') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点,E使用大写
'3.14E-05'
>>> format(3.1415926777,'.1g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留0位小数点
''
>>> format(3.1415926777,'.2g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留1位小数点
'3.1'
>>> format(3.1415926777,'.3g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留2位小数点
'3.14'
>>> format(0.00003141566,'.1n') #和g相同
'3e-05'
>>> format(0.00003141566,'.3n') #和g相同
'3.14e-05'
>>> format(0.00003141566) #和g相同
'3.141566e-05' format(了解即可)

format(了解即可)

  十一:内建函数补充(结合lambda)

字典的运算:最小值,最大值,排序
salaries={
'egon':3000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}

迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
'yuanhao'
>>> min(salaries)
'alex'

可以取values,来比较
>>> max(salaries.values())
100000000
>>> min(salaries.values())
2000
但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
'alex'
>>> min(salaries,key=lambda k:salary[k])
'yuanhao'

也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys())

先比较值,值相同则比较键
>>> max(salaries_and_names)
(100000000, 'alex')

salaries_and_names是迭代器,因而只能访问一次
>>> min(salaries_and_names)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: min() arg is an empty sequence

sorted(iterable,key=None,reverse=False)

  #eval与compile

eval(str,[,globasl[,locals]])
eval('1+2+max(3,9,100)+1.3')

my_globals={'x':1}
my_locals={'x':2}
eval('1+x',my_globals,my_locals)

exec('for i in range(10):print("i")')
同样可以指定自己的名称空间

compile(str,filename,kind)
filename:用于追踪str来自于哪个文件,如果不想追踪就可以不定义
kind可以是:single代表一条语句,exec代表一组语句,eval代表一个表达式

s='for i in range(10):print(i)'
code=compile(s,'','exec')
exec(code) s='1+2+3'
code=compile(s,'','eval')
eval(code)

  十二:函数的递归调用

        图解:递推和回溯

        # salary(5)=salary(4)+300
# salary(4)=salary(3)+300
# salary(3)=salary(2)+300
# salary(2)=salary(1)+300
# salary(1)=100
#
# salary(n)=salary(n-1)+300 n>1
# salary(1) =100 n=1 def salary(n):
if n == 1:
return 100
return salary(n-1)+300 print(salary(5))

函数在调用时,直接或间接调用了自身,就是递归调用

def fac(n):#阶乘运算
if n == 1:return 1
else:return n*fib(n-1)

递归效率低,需要在进入下一次递归时保留当前的状态,见51cto博客
解决方法是尾递归,即在函数的最后一步(而非最后一行)调用自己
但是python又没有尾递归,且对递归层级做了限制

1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
尾递归优化:http://egon09.blog.51cto.com/9161406/1842475

>>> sys.getrecursionlimit()
1000

>>> n=1
>>> def test():
... global n
... n+=1
... print(n)
... test()
... 
>>> test()

>>> sys.setrecursionlimit(10000)
>>> test() #可以递归10000层了

虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归

  十三 阶段性练习:

1 文件内容如下,标题为:姓名,性别,年纪,薪资

egon male 18 3000
alex male 38 30000
wupeiqi female 28 20000
yuanhao female 28 10000

要求:
从文件中取出每一条记录放入列表中,
列表的每个元素都是{'name':'egon','sex':'male','age':18,'salary':3000}的形式

2 根据1得到的列表,取出薪资最高的人的信息
3 根据1得到的列表,取出最年轻的人的信息
4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
5 根据1得到的列表,过滤掉名字以a开头的人的信息
6 使用递归打印斐波那契数列(前两个数的和得到第三个数)
0 1 1 2 3 4 7...

7 l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]]
  一个列表嵌套很多层,用递归取出所有的值

#
with open('db.txt') as f:
items=(line.split() for line in f)
info=[{'name':name,'sex':sex,'age':age,'salary':salary} \
for name,sex,age,salary in items] print(info)
#
print(max(info,key=lambda dic:dic['salary'])) #
print(min(info,key=lambda dic:dic['age'])) #
info_new=map(lambda item:{'name':item['name'].capitalize(),
'sex':item['sex'],
'age':item['age'],
'salary':item['salary']},info) print(list(info_new)) #
g=filter(lambda item:item['name'].startswith('a'),info)
print(list(g)) #
#非递归
def fib(n):
a,b=0,1
while a < n:
print(a,end=' ')
a,b=b,a+b
print() fib(10)
#递归
def fib(a,b,stop):
if a > stop:
return
print(a,end=' ')
fib(b,a+b,stop) fib(0,1,10) #
l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]] def get(seq):
for item in seq:
if type(item) is list:
get(item)
else:
print(item)
get(l)

十五:面向过程编程,函数式编程

峰哥原创面向过程解释:

函数的参数传入,是函数吃进去的食物,而函数return的返回值,是函数拉出来的结果,面向过程的思路就是,把程序的执行当做一串首尾相连的函数,一个函数吃,拉出的东西给另外一个函数吃,另外一个函数吃了再继续拉给下一个函数吃。。。

面向过程:机械式思维,流水线式编程

例如:
用户登录流程:前端接收处理用户请求-》将用户信息传给逻辑层,逻辑词处理用户信息-》将用户信息写入数据库
验证用户登录流程:数据库查询/处理用户信息-》交给逻辑层,逻辑层处理用户信息-》用户信息交给前端,前端显示用户信息

array=[1,3,4,71,2]

ret=[]
for i in array:
ret.append(i**2)
print(ret) #如果我们有一万个列表,那么你只能把上面的逻辑定义成函数
def map_test(array):
ret=[]
for i in array:
ret.append(i**2)
return ret print(map_test(array)) #如果我们的需求变了,不是把列表中每个元素都平方,还有加1,减一,那么可以这样
def add_num(x):
return x+1
def map_test(func,array):
ret=[]
for i in array:
ret.append(func(i))
return ret print(map_test(add_num,array))
#可以使用匿名函数
print(map_test(lambda x:x-1,array)) #上面就是map函数的功能,map得到的结果是可迭代对象
print(map(lambda x:x-1,range(5))) map

map

from functools import reduce
#合并,得一个合并的结果
array_test=[1,2,3,4,5,6,7]
array=range(100) #报错啊,res没有指定初始值
def reduce_test(func,array):
l=list(array)
for i in l:
res=func(res,i)
return res # print(reduce_test(lambda x,y:x+y,array)) #可以从列表左边弹出第一个值
def reduce_test(func,array):
l=list(array)
res=l.pop(0)
for i in l:
res=func(res,i)
return res print(reduce_test(lambda x,y:x+y,array)) #我们应该支持用户自己传入初始值
def reduce_test(func,array,init=None):
l=list(array)
if init is None:
res=l.pop(0)
else:
res=init
for i in l:
res=func(res,i)
return res print(reduce_test(lambda x,y:x+y,array))
print(reduce_test(lambda x,y:x+y,array,50)) reduce

reduce

movie_people=['alex','wupeiqi','yuanhao','sb_alex','sb_wupeiqi','sb_yuanhao']

def tell_sb(x):
return x.startswith('sb') def filter_test(func,array):
ret=[]
for i in array:
if func(i):
ret.append(i)
return ret print(filter_test(tell_sb,movie_people)) #函数filter,返回可迭代对象
print(filter(lambda x:x.startswith('sb'),movie_people)) filter

filter

#当然了,map,filter,reduce,可以处理所有数据类型

name_dic=[
{'name':'alex','age':1000},
{'name':'wupeiqi','age':10000},
{'name':'yuanhao','age':9000},
{'name':'linhaifeng','age':18},
]
#利用filter过滤掉千年王八,万年龟,还有一个九千岁
def func(x):
age_list=[1000,10000,9000]
return x['age'] not in age_list res=filter(func,name_dic)
for i in res:
print(i) res=filter(lambda x:x['age'] == 18,name_dic)
for i in res:
print(i) #reduce用来计算1到100的和
from functools import reduce
print(reduce(lambda x,y:x+y,range(100),100))
print(reduce(lambda x,y:x+y,range(1,101))) #用map来处理字符串列表啊,把列表中所有人都变成sb,比方alex_sb
name=['alex','wupeiqi','yuanhao'] res=map(lambda x:x+'_sb',name)
for i in res:
print(i) 总结

总结

python基础知识17---装饰器2的更多相关文章

  1. 【笔记】Python基础五:装饰器

    一,什么是装饰器 本质就是函数,功能是为其他函数添加附加功能 原则: 1,不修改被修饰函数的源代码 2,不修改被修饰函数的调用方式 例子: import time def timmer(func): ...

  2. python基础-内置装饰器classmethod和staticmethod

    面向对象编程之classmethod和staticmethod classmethod 和 staticmethod都是python内置的装饰器 classmethod 的作用:给在类内部定义的方法装 ...

  3. python基础知识10-描述器和装饰器

    课前的解答 1.vim怎么退出都知道吧,配置了pep8,所以说会出现退出的时候error,再退出一次就ok q:退出 w:保存 wq 保存退出 q!:强制退出 shift + zz:保存退出 x:保存 ...

  4. python基础5之装饰器

    内容概要: 一.装饰器前期知识储备 1.python解释函数代码过程: python解释器从上往下顺序解释代码,碰到函数的定义代码块不会立即执行它,而是将其放在内存中,等到该函数被调用时,才执行其内部 ...

  5. python基础-面向对象(装饰器)

    属性:   @property   @method_name.setter   @method_name.deleter   三个标签都是放在方法的上面来使用,且方法名要和后续使用的   变量名字相一 ...

  6. python基础篇_004_装饰器函数

    python装饰器函数 1.装饰器函数引导 功能:计算函数执行时长 import time """ 方式一: 函数首位添加时间,差值就是函数执行时间 缺点:每个函数都要加 ...

  7. Python基础-迭代器&生成器&装饰器

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 我现在有个需求,看 ...

  8. python基础-5.2装饰器

    1.了解装饰器前准备 #### 第一波 #### def foo(): print 'foo' foo #表示是函数,仅指向了函数的地址,为执行 foo() #表示执行foo函数 #### 第二波 # ...

  9. python基础之内置装饰器

    装饰器 简介 功能与格式 内置装饰器 @classmethod @propertry @staticmethod 其它 ---------------------------------------- ...

随机推荐

  1. html 使表格随着内容自动适应宽度

    所谓难而不会,会儿不难.这个问题让我纠结了很长时间,一句css解决了,仅仅靠一个属性 td { white-space: nowrap; } from:http://blog.csdn.net/liu ...

  2. 解决 error: Your local changes to the following files would be overwritten by merge:XXXX

    版权声明:这可是本菇凉辛辛苦苦原创的,转载请记得带上我家地址,不要忘记了哈 ... https://blog.csdn.net/u011314442/article/details/78852547 ...

  3. L2-001 紧急救援 (25 分)

    L2-001 紧急救援 (25 分)   作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快 ...

  4. java同步和互斥【用具体程序说明】

    java同步和互斥[用具体程序说明]            所有对象都自动含有单一的锁,也就是所有对象都有且只有唯一的锁,所以当某个任务(线程)访问一个类A中含有sycnhronized的方法是,那么 ...

  5. 震惊!!!源程序特征统计程序——基于python getopt库

    项目github地址:https://github.com/holidaysss/WC PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟 ...

  6. jQuery-4.动画篇---jQuery核心

    jQuery中each方法的应用 jQuery中有个很重要的核心方法each,大部分jQuery方法在内部都会调用each,其主要的原因的就是jQuery的实例是一个元素合集 如下:找到所有的div, ...

  7. Linux学习第一天————了解root用户和基本的shell命令

    一.了解Linux中的root用户  1.1root用户 使用过MySQL的同学都知道MySQL中有一个变态的存在叫做超级管理员,他可以从操作任何一个数据库,那么在Linux中也有这么一个变态的存在他 ...

  8. python 9

    一.常识 在制作统计表时,要创建一个listname_list,来存放列明,这样以后进行列明删减的更新时,比较方便. 二.函数的初识 代码遇到def就跳过,把函数内容放到内存中,遇到函数名再来执行函数 ...

  9. 第二次实验:CC2530平台上GPIO组件的TinyOS编程

    实验二 CC2530平台上GPIO组件的TinyOS编程 实验目的: 加深和巩固学生对于TinyOS编程方法的理解和掌握 让学生理解和掌握CC2530的GPIO及外部中断,及其TinyOS编程方法 学 ...

  10. Mabatis面试题

    Mybatis面试题 1请写出Mybatis核心配置文件MyBatis-config.xml的内容? <?xml version="1.0" encoding="U ...