1,创建Series

1.1,通过iterable创建Series

Series接收参数是Iterable,不能是Iterator

pd.Series(Iterable)

可以多加一个index参数,index可以接收Iterator或者Iterable:

>>> pd.Series(('a', 'b'), index=iter(range(2)))
0 a
1 b
dtype: object

1.2,通过字典创建Series

key是索引:

>>> pd.Series({'a':1, 'b':2})
a 1
b 2
dtype: int64

2,Series常用方法

s = pd.Series([1, 2, 3], index=list('abc'))

Series也能像字典那样遍历:

for index, value in s.items():
print(index, value, end=';') # a 1;b 2;c 3;

和字典一样,Series的in测试默认是index操作,如果想对values操作需加上values:

print('a' in s)   # True
print(1 in s.values) # True

获取series的values组成的列表:

print(s.tolist())   # [1, 2, 3]

  

3,创建DataFrame

3.1,通过iterable组成的列表创建DataFrame

[it1, it2, ..., itN],每个it是一行数据,缺省的index, columns是从0开始的int

>>> pd.DataFrame([(1, 2, 3), [4, 5, 6], range(3, 6), 'abc'])
0 1 2
0 1 2 3
1 4 5 6
2 3 4 5
3 a b c

it长度不等时会自动用NaN或者None填充:

>>> pd.DataFrame([(1, 2), [4, 5], range(3, 6), 'abc'])
0 1 2
0 1 2 None
1 4 5 None
2 3 4 5
3 a b c
>>> pd.DataFrame([(1, 2, 3), [4, 5, 6], range(3, 6), 'ab'])
0 1 2
0 1 2 3.0
1 4 5 6.0
2 3 4 5.0
3 a b NaN

指定index和columns:

>>> pd.DataFrame([(1, 2, 3), [4, 5, 6], range(3, 6), 'abc'], index=range(4), columns=list('ABC'))
A B C
1 1 2 3
2 4 5 6
3 3 4 5
4 a b c

3.2,通过numpy矩阵创建DataFrame

np_data = np.random.random((3, 4))
np_data = np.arange(12).reshape(3, 4)
np_data = np.ones((3, 4))
df = pd.DataFrame(np_data)

3.3,通过“一键多值”创建DataFrame

创建dataframe,键是列名:

>>> pd.DataFrame({'a':[1, 2, 3], 'b': [4, 5, 6]})
a b
0 1 4
1 2 5
2 3 6

可以设置index:

>>> pd.DataFrame({'a':[1, 2, 3], 'b': [4, 5, 6]}, index=list('456'))
a b
4 1 4
5 2 5
6 3 6

创建df时更改columns会出问题:

>>> pd.DataFrame({'a':[1, 2, 3], 'b': [4, 5, 6]}, columns=list('AB'))
Empty DataFrame
Columns: [A, B]
Index: []

这种创建方法可以看做是按列创建df,需要事先建很多列表,最后一次性赋给df

3.4,通过“字典列表”创建DataFrame

pd.DataFrame([{'a':1 , 'b': 4},  {'a':2 , 'b': 5},  {'a':3 , 'b': 6}])
a b
0 1 4
1 2 5
2 3 6

这种方法只需要创建一个列表,然后不停往该列表里添加字典即可,推荐!

3.5,df.loc,df.iloc,df.ix等逐行/逐单元格创建DataFrame

事先创建好dataframe,然后用dfdf.loc,df.iloc,df.ix逐行逐单元格增加数据,例如:

df = pd.DataFrame()
for index, item in enumerate(zip('abcde', range(5))):
df.loc[index, 'A'] = item[0]
df.loc[index, 'B'] = item[1]

效率非常低,不推荐

4,SettingWithCopyWarning

对DataFrame的弱引用对象进行拷贝进行赋值会触发SettingWithCopyWarning。

通过bool序列筛选拿到的是dataframe的弱引用对象。对弱引用对象进行修改时,不会影响到原来的dataframe。

>>>df = pd.DataFrame(np.arange(16).reshape(4, 4), columns=list('ABCD'))
>>>df1 = df[df['B'] > 2]
>>>df1.is_copy
<weakref at 0x08B5F6C0; to 'DataFrame' at 0x00CC5070>
>>>df1['A'] = 0
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
>>>df1 # df1会改变
A B C D
1 0 5 6 7
2 0 9 10 11
3 0 13 14 15
>>>df # df不会改变
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15

df1是df的弱引用拷贝,对df1进行赋值会触发SettingWithCopyWarning。

如果df1 = df.copy()不会触发该警告。

另外,如果是获取一个列,则拿到的是视图,并不是弱引用,对该视图进行的修改会反映到源dataframe:

>>>df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=list('ABCD'))
>>>a = df['A']
>>>a.loc[1] = 55
>>>a
A B C D
0 0 1 2 3
1 55 5 6 7
2 8 9 10 11

  

Pandas Series和DataFrame的基本概念的更多相关文章

  1. Pandas Series 与 DataFrame 数据创建

    >>> import pandas as pd >>> import numpy as np >>> print(np.__version__), ...

  2. pandas Series和dataframe

    DataFrame是一个表格型数据结构,与Series不同的是,DataFrame可以含有一组或者有序的列,每列可以使不同的值的类型,它可以被看做成Series的字典.

  3. pandas数组(pandas Series)-(2)

    pandas Series 比 numpy array 要强大很多,体现在很多方面 首先, pandas Series 有一些方法,比如: describe 方法可以给出 Series 的一些分析数据 ...

  4. pandas-21 Series和Dataframe的画图方法

    pandas-21 Series和Dataframe的画图方法 ### 前言 在pandas中,无论是series还是dataframe都内置了.plot()方法,可以结合plt.show()进行很方 ...

  5. 02. Pandas 1|数据结构Series、Dataframe

    1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index  . s.values # Series 数据结构 # Series 是带有标签的一 ...

  6. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

  7. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  8. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  9. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

随机推荐

  1. eclipse配置tomcat添加外部项目

    在eclipse中配置tomcat,添加外部项目. 添加外部项目 然后直接启动服务器,服务器里面不能添加项目.

  2. web前端设计最好用的工具

    一.FSCapture FastStone Capture(FSCapture)是经典好用的屏幕截图软件,还具有图像编辑和屏幕录制两大功能,可以捕捉全屏图像,或者活动窗口.窗口内的控件对象截图.支持手 ...

  3. Jar包的手动导入

      (1)打开项目的file  找到project structure   (2)进行以下操作

  4. SQL注入检测方法

    private bool CheckParams(params object[] args){ string[] Lawlesses={"=","'"}; if ...

  5. P1772 [ZJOI2006]物流运输

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  6. Max Sum Plus Plus HDU - 1024

    Max Sum Plus Plus     HDU - 1024 Now I think you have got an AC in Ignatius.L's "Max Sum" ...

  7. 【js】js声明与数据类型

    之前整理知识点感觉有点没有针对性,每期知识点之间都没有关联,不成体系,其实对学习与运用知识并无益,随着知识的积累,不使用就会忘记.所以从本次开始,将对知识点进行体系化.先列出本期知识体系图,再进行逐步 ...

  8. 程序员 面试题【前端,java,php】

    跬步客 网址:https://www.kuibuke.com/wall/index

  9. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  10. SpringBoot Tomcat启动报错

    中间的桥梁就是下面这个依赖 <dependency> <groupId>org.slf4j</groupId> <artifactId>jcl-over ...