SPP-net原理解读
转载自:目标检测:SPP-net 地址https://blog.csdn.net/tinyzhao/article/details/53717136
上文说到R-CNN的最大瓶颈是2k个候选区域都要经过一次CNN,速度非常慢。Kaiming He大神最先对此作出改进,提出了SPP-net,最大的改进是只需要将原图输入一次,就可以得到每个候选区域的特征。
概述
在R-CNN中,候选区域需要进过变形缩放,以此适应CNN输入,那么能不能修改网络结构,使得任意大小的图片都能输入到CNN中呢?作者提出了spatial pyramid pooling结构来适应任何大小的图片输入。
网络结构
为什么CNN需要固定输入大小?卷积层和池化层的输出尺寸都是和输入尺寸相关的,它们的输入是不需要固定图片尺寸的,真正需要固定尺寸的是最后的全连接层。
由于FC层的存在,普通的CNN通过固定输入图片的大小来使得全连接层输入固定。作者不这样思考,既然卷积层可以适应任何尺寸,那么只需要在卷积层的最后加入某种结构,使得后面全连接层得到的输入为固定长度就可以了。这个结构就是spatial pyramid pooling layer:
在最后的卷积层和全连接层之间加入SPP层。具体做法是,在conv5层得到的特征图是256层,每层都做一次spatial pyramid pooling。先把每个特征图分割成多个不同尺寸的网格,比如网格分别为4*4、2*2、1*1,然后每个网格做max pooling,这样256层特征图就形成了16*256,4*256,1*256维特征,他们连起来就形成了一个固定长度的特征向量,将这个向量输入到后面的全连接层。
训练
这样的网络怎么训练呢?对于图片分类任务而言,如果图片大小固定,那么SPP层每个金字塔的大小是可以提前计算的,根据conv5的尺寸计算出每次池化的步长和窗口大小。如果图片大小不固定呢,将图片变为不同的尺寸224*224和180*180,因为池化层是没有参数的,步长和窗口大小是提前计算得到的,两种尺寸的网络是共享了所有的参数。使用两种尺寸图片轮流训练网络,更新参数。作者发现多尺寸和单尺寸收敛速度是差不多的。两种尺寸是训练时候的策略,在测试的时候,不管什么尺寸的输入,直接使用训练好的参数计算。
检测
上面说的都是分类问题,下面说SPP在检测问题中的应用。
对卷积层可视化发现:输入图片的某个位置的特征反应在特征图上也是在相同位置。基于这一事实,对某个ROI区域的特征提取只需要在特征图上的相应位置提取就可以了。
一张任意尺寸的图片,在最后的卷积层conv5可以得到特征图。根据Region proposal步骤可以得到很多候选区域,这个候选区域可以在特征图上找到相同位置对应的窗口,然后使用SPP,每个窗口都可以得到一个固定长度的输出。将这个输出输入到全连接层里面。这样,图片只需要经过一次CNN,候选区域特征直接从整张图片特征图上提取。在训练这个特征提取网络的时候,使用分类任务得到的网络,固定前面的卷积层,只微调后面的全连接层。
在检测的后面模块,仍然和R-CNN一样,使用SVM和边框回归。SVM的特征输入是FC层,边框回归特征使用SPP层。
总结
SPP-net对R-CNN最大的改进就是特征提取步骤做了修改,其他模块仍然和R-CNN一样。特征提取不再需要每个候选区域都经过CNN,只需要将整张图片输入到CNN就可以了,ROI特征直接从特征图获取。和R-CNN相比,速度提高了百倍。
SPP-net缺点也很明显,CNN中的conv层在微调时是不能继续训练的。它仍然是R-CNN的框架,离我们需要的端到端的检测还差很多。既然端到端如此困难,那就先统一后面的几个模块吧,把SVM和边框回归去掉,由CNN直接得到类别和边框可不可以?于是就有了Fast R-CNN。
SPP-net原理解读的更多相关文章
- NRF24L01——工作原理解读
源: NRF24L01——工作原理解读
- Java并发之AQS原理解读(三)
上一篇:Java并发之AQS原理解读(二) 前言 本文从源码角度分析AQS共享锁工作原理,并介绍下使用共享锁的子类如何工作的. 共享锁工作原理 共享锁与独占锁的不同之处在于,获取锁和释放锁成功后,都会 ...
- Java并发之AQS原理解读(二)
上一篇: Java并发之AQS原理解读(一) 前言 本文从源码角度分析AQS独占锁工作原理,并介绍ReentranLock如何应用. 独占锁工作原理 独占锁即每次只有一个线程可以获得同一个锁资源. 获 ...
- Java并发之AQS原理解读(一)
前言 本文简要介绍AQS以及其中两个重要概念:state和Node. AQS 抽象队列同步器AQS是java.util.concurrent.locks包下比较核心的类之一,包括AbstractQue ...
- Java线程池原理解读
引言 引用自<阿里巴巴JAVA开发手册> [强制]线程资源必须通过线程池提供,不允许在应用中自行显式创建线程. 说明:使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源的开销 ...
- https原理解读
参考:架构师必读!以图文的方式解锁 HTTPS原理,10分钟还原HTTPS真像! 对于消息安全的定义是:即使消息被中间人拦截到,中间人也没办法解读出其中的消息. 对称加密 要实现消息安全,首先想到的是 ...
- PolarDB PostgreSQL 架构原理解读
背景 PolarDB PostgreSQL(以下简称PolarDB)是一款阿里云自主研发的企业级数据库产品,采用计算存储分离架构,兼容PostgreSQL与Oracle.PolarDB 的存储与计算能 ...
- XtraBackup原理解读
XtraBackup是现今为止唯一一款为InnoDB 和XtraDB提供热备的开源工具,这个工具有以下的有点: (1)备份快速高效而且可靠 (2)备份过程可以做到事物处理不间断 (3)节省磁盘空间和网 ...
- Spring IOC原理解读 面试必读
Spring源码解析:Bean实例的创建与初始化 一. 什么是Ioc/DI? 二. Spring IOC体系结构 (1) BeanFactory (2) BeanDefinition 三. IoC容器 ...
随机推荐
- Activiti(二) springBoot2集成activiti,集成activiti在线设计器
摘要 本篇随笔主要记录springBoot2集成activiti流程引擎,并且嵌入activiti的在线设计器,可以通过浏览器直接编辑出我们需要的流程,不需要通过eclipse或者IDEA的actiB ...
- JavaScript知识点 思维导图
javascript变量 javascript数据类型 javascript运算符 javascript流程语句 javascript数组 javascript字符串函数 javascript函数基础 ...
- win10更新系统后,无法远程访问的bug
win10更新系统后,无法远程访问其它电脑(服务器),同时关于其它的远程服务也将无法使用(打印机……) 是因为win10自动更新的时候安装了KB4103718插件 解决办法: 1.手动卸掉KB4103 ...
- 使用ArcGIS Earth矢量化高精度的数据(kml转图层转shp/要素类)
大家好,这次来分享干货.做地理分析的同学,或者需要使用地图却不知道哪里有精度较高矢量数据(如校园图)的时候,怎么办呢? 我们知道ArcGIS提供了精度较高的全球影像图,基于此,可以自己进行矢量化,然后 ...
- Arcpy多线程热力图
起因是这样一段对话,领导:你会用脚本生成热力图图片吗?我:可以研究下.领导:那这个需求就给你了.我:...... 经过一番研究,研究出大概的思路,先将有经纬度的表中的数据筛选出表并生成 ...
- offic|集成|协同OA|移动办公|
随着互联网时代的日新月异,移动通讯技术的飞速发展,移动网络技术的更新换代,手机.平板电脑等移动设备越来越智能化.越来越多样化,人们对移动办公的需求也在日益增长.在此背景下北京博信施科技有限公司自主研发 ...
- 调用android的getColor()方法出现 java.lang.NoSuchMethodError: android.content.res.Resources.getColor
1.java.lang.NoSuchMethodError: android.content.res.Resources.getDrawable/getColor或者 java.lang.NoSuch ...
- (最简单)红米手机5A的USB调试模式在哪里开启的方法
当我们使用安卓手机链接Pc的时候,或者使用的有些APP比如我们公司营销小组当使用的APP引号精灵,之前使用的老版本就需要开启usb调试模式下使用,现当新版本不需要了,如果手机没有开启usb调试模式,P ...
- [安卓]ListView 与 RecyclerView的比较
ListView与RecyclerView在在app应用非常广泛,相对于其他的view(button textview)来说比较复杂,接下来我将讲一下创建的流程以及两者的不同. 代码来自<第一行 ...
- ES6常用
ECMAScript 6(以下简称ES6)是JavaScript语言的下一代标准. 因为当前版本的ES6是在2015年发布的,所以又称ECMAScript 2015(简称ES2015).虽然浏览器在不 ...