https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html

Feature Pyramid Networks for Object Detection

Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf

Reference : T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection.Computer Vision and Pattern Recognition, 2017. CVPR 2017.

The Feature Pyramid Network (FPN) looks a lot like the U-net. The main difference is that there is multiple prediction layers: one for each upsampling layer. Like the U-Net, the FPN has laterals connection between the bottom-up pyramid (left) and the top-down pyramid (right). But, where U-net only copy the features and append them, FPN apply a 1x1 convolution layer before adding them. This allows the bottom-up pyramid called “backbone” to be pretty much whatever you want. In their experiments, the authors use Resnet-50 as their backbone.

FPN for region-proposal

To achieve region-proposal, the authors add a 3x3 Conv layer followed by two 1x1 Conv for classification and regression on each upsampling layer. These additions are called heads and the weights are shared. For each head, you assign a set of anchors boxes resized to match the head’s shape. The anchors are of multiple pre-defined scales and aspect ratios in order to cover objects of different shapes. Training labels are then assigned to each anchor based on the IoU. A positive label is assigned if the IoU is greater than 70%.

FPN for object Detection

Using Fast(er) R-CNN, they can use FPN as the region proposal part. The proposals are used in combination with RoiPooling and then they can do the same work as Fast(er) R-CNN.

Results

Faster R-CNN on FPN with a ResNet-101 backbone is achieving state of the art on the COCO detection benchmark. It’s also faster than Resnet-101 Faster R-CNN by a significant margin because of the weight sharing in the heads.

Effect of lateral connections

FPN performs better than a normal Conv-Deconv because the Conv-Deconv’s feature maps are wrong according to the authors. Indeed, they argue that the locations of these maps are not precise, because these maps have been downsampled and upsampled several times. There is a 10% jump in accuracy using lateral connections.

Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv的更多相关文章

  1. 『计算机视觉』FPN:feature pyramid networks for object detection

    对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...

  2. 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

    目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...

  3. Feature Pyramid Networks for Object Detection

    Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...

  4. 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)

    论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...

  5. 论文阅读 | FPN:Feature Pyramid Networks for Object Detection

    论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...

  6. FPN-Feature Pyramid Networks for Object Detection

    FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...

  7. Parallel Feature Pyramid Network for Object Detection

    Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...

  8. FPN(feature pyramid networks)

    多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...

  9. Paper Reading: Relation Networks for Object Detection

    Relation Networks for Object Detection笔记  写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...

随机推荐

  1. mac IntelliJ Idea添加schema和dtd约束提示

    打开设置 找到Schemac and DTDs 配置约束文件

  2. Chrome 下input的默认样式

    一.去除默认边框以及padding border: none;padding:0 二.去除聚焦蓝色边框 outline: none; 三.form表单自动填充变色 1.给input设置内置阴影,至少要 ...

  3. 解决: 移动端经mouseover显示出的弹层中链接点击问题

    通常我们会遇到这样的需求,导航菜单在鼠标划过的时候显示自定义弹层,在弹层中有一些链接需要点击后跳转或者其他一些事件.比如: $(".menu li").on("mouse ...

  4. i的二次幂求和

    \(i^2\)求和 老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\) 但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然 ...

  5. android如何获取SHA1

    某些Google Play服务(例如Google登录和App Invites)要求我们提供签名证书的SHA-1,以便google paly为我们的应用创建OAuth2客户端和API密钥. 那么如何获取 ...

  6. Git:八、Git自定义:忽略特殊文件&配置别名

    1..gitignore配置文件 1)防止加入Git或输入git status时显示,需要让Git忽略的文件: 程序编译生成的非原代码的文件 存放密码的文件 2)配置文件:.gitignore Git ...

  7. 微信小程序转发微信小程序转发

    微信小程序转发涉及以下4个方法: 1.Page.onShareAppMessage({}) 设置右上角“转发”配置,及转发后回调函数返回 shareTicket 票据 2.wx.showSahreMe ...

  8. ICD

    International Classification of Diseases,ICD 国际疾病分类

  9. AngularJS学习之旅—AngularJS Http(九)

    1.AngularJS XMLHttpRequest $http 是 AngularJS 中的一个核心服务,用于读取远程服务器的数据. eg: // 简单的 GET 请求,可以改为 POST $htt ...

  10. 【Linux基础】查看某一端口是否开放(1025为例)

    1.使用lsof 命令来查看端口是否开放 lsof -i:1025 //如果有显示说明已经开放了,如果没有显示说明没有开放 lsof(list open files)是一个列出当前系统打开文件的工具. ...