六 memory&chosen节点

根节点那一节我们说过,最简单的设备树也必须包含cpus节点和memory节点。memory节点用来描述硬件内存布局的。如果有多块内存,既可以通过多个memory节点表示,也可以通过一个memory节点的reg属性的多个元素支持。举一个例子,假如某个64位的系统有两块内存,分别是

• RAM: 起始地址 0x0, 长度 0x80000000 (2GB)
• RAM: 起始地址 0x100000000, 长度 0x100000000 (4GB)

对于64位的系统,根节点的#address-cells属性和#size-cells属性都设置成2。一个memory节点的形式如下(还记得前几节说过节点地址必须和reg属性第一个地址相同的事情吧):
    memory@0 {
        device_type = "memory";
        reg = <0x000000000 0x00000000 0x00000000 0x80000000
               0x000000001 0x00000000 0x00000001 0x00000000>;
    };

两个memory节点的形式如下:
    memory@0 {
        device_type = "memory";
        reg = <0x000000000 0x00000000 0x00000000 0x80000000>;
    };
    memory@100000000 {
        device_type = "memory";
        reg = <0x000000001 0x00000000 0x00000001 0x00000000>;
    };

chosen节点也位于根节点下,该节点用来给内核传递参数(不代表实际硬件)。对于Linux内核,该节点下最有用的属性是bootargs,该属性的类型是字符串,用来向Linux内核传递cmdline。规范中还定义了stdout-path和stdin-path两个可选的、字符串类型的属性,这两个属性的目的是用来指定标准输入输出设备的,在linux中,这两个属性基本不用。

memory和chosen节点在内核初始化的代码都位于start_kernel()->setup_arch()->setup_machine_fdt()->early_init_dt_scan_nodes()函数中(位于drivers/of/fdt.c),复制代码如下(本节所有代码都来自官方内核4.4-rc7版本):

1078 void __init early_init_dt_scan_nodes(void)
1079 {      
1080     /* Retrieve various information from the /chosen node */
1081     of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1082 
1083     /* Initialize {size,address}-cells info */
1084     of_scan_flat_dt(early_init_dt_scan_root, NULL);
1085 
1086     /* Setup memory, calling early_init_dt_add_memory_arch */
1087     of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1088 }

of_scan_flat_dt函数扫描整个设备树,实际的动作是在回调函数中完成的。第1081行是对chosen节点操作,该行代码的作用是将节点下的bootargs属性的字符串拷贝到boot_command_line指向的内存中。boot_command_line是内核的一个全局变量,在内核的多处都会用到。第1084行是根据根节点的#address-cells属性和#size-cells属性初始化全局变量dt_root_size_cells和dt_root_addr_cells,还记得前边说过如果没有设置属性的话就用默认值,这些都在early_init_dt_scan_root函数中实现。第1087行是对内存进行初始化,复制early_init_dt_scan_memory部分代码如下:

893 /**
 894  * early_init_dt_scan_memory - Look for an parse memory nodes
 895  */
 896 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
 897                      int depth, void *data)
 898 {
 899     const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 900     const __be32 *reg, *endp;
 901     int l;
 902 
 903     /* We are scanning "memory" nodes only */
 904     if (type == NULL) {
 905         /*
 906          * The longtrail doesn't have a device_type on the
 907          * /memory node, so look for the node called /memory@0.
 908          */
 909         if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
 910             return 0;
 911     } else if (strcmp(type, "memory") != 0)
 912         return 0;
 913 
 914     reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
 915     if (reg == NULL)
 916         reg = of_get_flat_dt_prop(node, "reg", &l);
 917     if (reg == NULL)
 918         return 0;
 919 
 920     endp = reg + (l / sizeof(__be32));
 921 
 922     pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 923 
 924     while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
 925         u64 base, size;
 926 
 927         base = dt_mem_next_cell(dt_root_addr_cells, &reg);
 928         size = dt_mem_next_cell(dt_root_size_cells, &reg);
 929
 930         if (size == 0)
 931             continue;
 932         pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
 933             (unsigned long long)size);
 934 
 935         early_init_dt_add_memory_arch(base, size);
 936     }
 937 
 938     return 0;
 939 }

第914行可以看出linux内核不仅支持reg属性,也支持linux,usable-memory属性。对于dt_root_addr_cells和dt_root_size_cells的使用也能看出根节点的#address-cells属性和#size-cells属性都是用来描述内存地址和大小的。得到每块内存的起始地址和大小后,在第935行调用early_init_dt_add_memory_arch函数,复制代码如下:
 
 983 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
 984 {
 985     const u64 phys_offset = __pa(PAGE_OFFSET);
 986 
 987     if (!PAGE_ALIGNED(base)) {
 988         if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
 989             pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
 990                 base, base + size);
 991             return;
 992         }
 993         size -= PAGE_SIZE - (base & ~PAGE_MASK);
 994         base = PAGE_ALIGN(base);
 995     }
 996     size &= PAGE_MASK;
 997 
 998     if (base > MAX_MEMBLOCK_ADDR) {
 999         pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1000                 base, base + size);
1001         return;
1002     }
1003 
1004     if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1005         pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1006                 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1007         size = MAX_MEMBLOCK_ADDR - base + 1;
1008     }
1009 
1010     if (base + size < phys_offset) {
1011         pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1012                base, base + size);
1013         return;
1014     }
1015     if (base < phys_offset) {
1016         pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1015     if (base < phys_offset) {
1016         pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1017                base, phys_offset);
1018         size -= phys_offset - base;
1019         base = phys_offset;
1020     }
1021     memblock_add(base, size);
1022 }

从以上代码可以看出内核对地址和大小做了一系列判断后,最后调用memblock_add将内存块加入内核。

Linux设备树(六 memory&chosen节点)的更多相关文章

  1. 我眼中的Linux设备树(六 memory&chosen节点)

    六 memory&chosen节点根节点那一节我们说过,最简单的设备树也必须包含cpus节点和memory节点.memory节点用来描述硬件内存布局的.如果有多块内存,既可以通过多个memor ...

  2. 我眼中的Linux设备树(五 根节点)

    五 根节点一个最简单的设备树必须包含根节点,cpus节点,memory节点.根节点的名字及全路径都是"/",至少需要包含model和compatible两个属性.model属性我们 ...

  3. Linux设备树(五 根节点)

    五 根节点 一个最简单的设备树必须包含根节点,cpus节点,memory节点.根节点的名字及全路径都是“/”,至少需要包含model和compatible两个属性.model属性我们在属性那节已经说过 ...

  4. linux 设备树【转】

    转自:http://blog.csdn.net/chenqianleo/article/details/77779439 [-] linux 设备树 为什么要使用设备树Device Tree 设备树的 ...

  5. linux设备树语法

    设备树语法及绑定 概述 Device Tree是一种用来描述硬件的数据结构,类似板级描述语言,起源于OpenFirmware(OF). 就ARM平台来说,设备树文件存放在arch/arm/boot/d ...

  6. 【转载】Linux设备树(Device Tree)机制

    转:Linux设备树(Device Tree)机制   目录 1. 设备树(Device Tree)基本概念及作用2. 设备树的组成和使用 2.1. DTS和DTSI 2.2. DTC 2.3. DT ...

  7. Linux设备树语法详解

    概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代 ...

  8. Linux设备树语法详解【转】

    转自:http://www.cnblogs.com/xiaojiang1025/p/6131381.html 概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备 ...

  9. 宋牧春: Linux设备树文件结构与解析深度分析(2) 【转】

    转自:https://mp.weixin.qq.com/s/WPZSElF3OQPMGqdoldm07A 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...

随机推荐

  1. PJSUA2开发文档--第八章 好友(Buddy)类

    8  好友(存在)Buddy PJSUA2的功能是围绕Buddy类为中心展开的.该类表示一个远端好友(伙伴,一个人或一个SIP端点). 8.1 子类化Buddy类 要使用Buddy类,通常应创建子类, ...

  2. cmd的变量总结

    转自:https://blog.csdn.net/flyoutsan/article/details/52811095 cmd变量通过set设置变量,通过可以使用set /?查看有关变量的帮助文档. ...

  3. selenium-启动浏览器(二)

    selenium下启动浏览器,有两种方法 以 chromedrvier.exe 为例 1. chromedrvier.exe 与 python 启动程序 python.exe 在同一个目录下则可直接使 ...

  4. 20181218-PostgreSQL数据库Extension管理

    20181218-PostgreSQL数据库Extension管理 注意:在集群的一个数据库中安装扩展,在集群的另一个数据库要使用的话,仍需安装 1. 查看当前已安装Extension postgre ...

  5. Python简单多进程demo

    ''' 多线程使用场景: 怎样用Python的多线程提高效率? io操作不占用CPU 计算操作占用CPU Python多线程不适合CPU操作密集型的任务,适合io操作密集型的任务 如果有CPU操作密集 ...

  6. 【English】20190321

    Keep in mind记住[kip ɪn maɪnd]  maintenance维护[ˈmentənəns] Also Keep in mind that table maintenance use ...

  7. linux 系统信息展示 htop glances conky psensor

    htop glances conky psensor htop glances 只能在终端内展示. htop 使用系统自带程序包管理程序就可以安装 glances github地址:https://g ...

  8. 看门狗芯片--SP706SEN--调试记录

    一.前因后果 工程中,设备为了稳定可靠,会增加外部看门狗,但是外部看门狗一旦启动,就停不下来,必须在固定的时间范围内进行喂狗,不然看门狗芯片就会产生一个复位信号复位MCU.以前大家都认为看门狗一旦工作 ...

  9. iOS开发基础-九宫格坐标(3)之Xib

    延续iOS开发基础-九宫格坐标(2)的内容,对其进行部分修改. 本部分采用 Xib 文件来创建用于显示图片的 UIView 对象. 一.简单介绍  Xib 和 storyboard 的比较: 1) X ...

  10. 【Android】pidcat 不显示日志输出

    问题: 直接安装了 pidcat :  brew install pidcat ,装完以后执行 pidcat <package name> ,发现没有日志输出,adb devices 也能 ...