对分类型变量,进行编码处理——pd.get_dummies()、LabelEncoder()、oneHotEncoder()
背景:
在拿到的数据里,经常有分类型变量的存在,如下:
球鞋品牌:Nike、adidas、 Vans、PUMA、CONVERSE
性别:男、女
颜色:红、黄、蓝、绿
However,sklearn大佬不能直接分析这类变量呀。在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是算法关键部分,而常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。于是,我们要对这些分类变量进行哑变量处理,又或者叫虚拟变量。
缺点:
当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
In summary,
要是one hot encoding的类别数目不太多,可优先考虑。
一.pd.get_dummies()简单&粗暴
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)
官网文档:
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
输入:array-like, Series, or DataFrame
输出:DataFrame
主要参数说明:
data : array-like, Series, or DataFrame
prefix : 给输出的列添加前缀,如prefix="A",输出的列会显示类似
prefix_sep : 设置前缀跟分类的分隔符sepration,默认是下划线"_"
一般,我们输入data就够了。如果要专门关注Nan这类东东,可设置dummy_na=True,专门生成一列数据。
见下面的栗子:(简直不要太容易)
import numpy as np
import pandas as pd
data = pd.DataFrame({"学号":[1001,1002,1003,1004],
"性别":["男","女","女","男"],
"学历":["本科","硕士","专科","本科"]})
data
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
学历 | 学号 | 性别 | |
---|---|---|---|
0 | 本科 | 1001 | 男 |
1 | 硕士 | 1002 | 女 |
2 | 专科 | 1003 | 女 |
3 | 本科 | 1004 | 男 |
pd.get_dummies(data)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
学号 | 学历_专科 | 学历_本科 | 学历_硕士 | 性别_女 | 性别_男 | |
---|---|---|---|---|---|---|
0 | 1001 | 0 | 1 | 0 | 0 | 1 |
1 | 1002 | 0 | 0 | 1 | 1 | 0 |
2 | 1003 | 1 | 0 | 0 | 1 | 0 |
3 | 1004 | 0 | 1 | 0 | 0 | 1 |
pd.get_dummies(data,prefix="A")
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
学号 | A_专科 | A_本科 | A_硕士 | A_女 | A_男 | |
---|---|---|---|---|---|---|
0 | 1001 | 0 | 1 | 0 | 0 | 1 |
1 | 1002 | 0 | 0 | 1 | 1 | 0 |
2 | 1003 | 1 | 0 | 0 | 1 | 0 |
3 | 1004 | 0 | 1 | 0 | 0 | 1 |
pd.get_dummies(data,prefix=["A","B"],prefix_sep="+")
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
学号 | A+专科 | A+本科 | A+硕士 | B+女 | B+男 | |
---|---|---|---|---|---|---|
0 | 1001 | 0 | 1 | 0 | 0 | 1 |
1 | 1002 | 0 | 0 | 1 | 1 | 0 |
2 | 1003 | 1 | 0 | 0 | 1 | 0 |
3 | 1004 | 0 | 1 | 0 | 0 | 1 |
二.sklearn的崽一:LabelEncoder 将不连续的数字or文本进行编号
sklearn.preprocessing.LabelEncoder()
官方文档:
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
#输出: array([0,0,3,2,1])
array([0, 0, 3, 2, 1], dtype=int64)
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit([1, 3, 3, 7])
LabelEncoder()
le.transform([1, 1, 3, 7])
#array([0, 0, 1, 2]...)
le.classes_ #查看分类
#array([1, 2, 6])
le.inverse_transform([0, 0, 1, 2]) #transform的逆向
#array([1, 1, 2, 6])
array([1, 1, 3, 7])
三.sklearn的崽二:OneHotEncoder 对表示分类的数字进行编码,输出跟dummies一样
sklearn.preprocessing.OneHotEncoder(n_values=None, categorical_features=None, categories=None, sparse=True, dtype=<class ‘numpy.float64’>, handle_unknown=’error’)
官方文档:
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
注意:
输入的应该是表示类别的数字,如果输入文本,会报错的。
from sklearn.preprocessing import OneHotEncoder
OHE = OneHotEncoder()
OHE.fit(data)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-7-ba3b2772e40d> in <module>()
1 from sklearn.preprocessing import OneHotEncoder
2 OHE = OneHotEncoder()
----> 3 OHE.fit(data)
F:\Anaconda\lib\site-packages\sklearn\preprocessing\data.py in fit(self, X, y)
1954 self
1955 """
-> 1956 self.fit_transform(X)
1957 return self
1958
F:\Anaconda\lib\site-packages\sklearn\preprocessing\data.py in fit_transform(self, X, y)
2017 """
2018 return _transform_selected(X, self._fit_transform,
-> 2019 self.categorical_features, copy=True)
2020
2021 def _transform(self, X):
F:\Anaconda\lib\site-packages\sklearn\preprocessing\data.py in _transform_selected(X, transform, selected, copy)
1807 X : array or sparse matrix, shape=(n_samples, n_features_new)
1808 """
-> 1809 X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
1810
1811 if isinstance(selected, six.string_types) and selected == "all":
F:\Anaconda\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
400 force_all_finite)
401 else:
--> 402 array = np.array(array, dtype=dtype, order=order, copy=copy)
403
404 if ensure_2d:
ValueError: could not convert string to float: '男'
看到,OneHotEncoder处理不了字符串。要先用
data3 = le.fit_transform(data["性别"])
OHE.fit(data3.reshape(-1,1))
OHE.transform(data3.reshape(-1,1)).toarray()
array([[ 0., 1.],
[ 1., 0.],
[ 1., 0.],
[ 0., 1.]])
对因变量y不能用OneHotEncoder,要用LabelBinarizer。
对分类型变量,进行编码处理——pd.get_dummies()、LabelEncoder()、oneHotEncoder()的更多相关文章
- 机器学习入门-数值特征-数字映射和one-hot编码 1.LabelEncoder(进行数据自编码) 2.map(进行字典的数字编码映射) 3.OnehotEncoder(进行one-hot编码) 4.pd.get_dummies(直接对特征进行one-hot编码)
1.LabelEncoder() # 用于构建数字编码 2 .map(dict_map) 根据dict_map字典进行数字编码的映射 3.OnehotEncoder() # 进行one-hot编码 ...
- 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转
在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features) ...
- Python学习笔记:利用pd.get_dummies实现哑变量编码
一.理论介绍 虚拟变量(dummy variable)也叫哑变量,是一种将多分类变量转换为二分变量的一种形式. 如果多分类变量有k个类别,则可以转化为k-1个二分变量. 需要有一个参照的类别. 在非线 ...
- pandas 下的 one hot encoder 及 pd.get_dummies() 与 sklearn.preprocessing 下的 OneHotEncoder 的区别
sklearn.preprocessing 下除了提供 OneHotEncoder 还提供 LabelEncoder(简单地将 categorical labels 转换为不同的数字): 1. 简单区 ...
- 贝叶斯--旧金山犯罪分类预测和电影评价好坏 demo
来源引用:https://blog.csdn.net/han_xiaoyang/article/details/50629608 1.引言 贝叶斯是经典的机器学习算法,朴素贝叶斯经常运用于机器学习的案 ...
- O2O淘宝优惠券代码总结
一.数据集预处理 1.数据读入 import pandas as pd import numpy as np import datetime as date import datetime as dt ...
- 数据分析-kaggle泰坦尼克号生存率分析
概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 机器学习入门-随机森林温度预测-增加样本数据 1.sns.pairplot(画出两个关系的散点图) 2.MAE(平均绝对误差) 3.MAPE(准确率指标)
在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样 ...
随机推荐
- C#2.0 迭代器
迭代器 迭代器模式是和为模式的一种范例,我们访问数据序列中所有的元素,不用关心序列是什么类型.从数据管道中数据经过一系列不同的转换或过滤后从管道的另一端出来. 像数组.集合等已经内置了迭代器,我们可以 ...
- 如何优雅的使用 Angular 表单验证
随便说说,这一节可以跳过 去年参加 ngChine 2018 杭州开发者大会的时候记得有人问我: Worktile 是什么时候开始使用 Angular 的,我说是今年(2018年) 3 月份开始在新模 ...
- cache2go源码最后一讲 - examples
先看一下我们讲到哪里了: cache2go的源码前面我们已经讲完了cacheitem和cachetable的实现,今天cahce和examples会一起讲完~ 1.cache.go源码 ...
- LeetCode专题-Python实现之第20题:Valid Parentheses
导航页-LeetCode专题-Python实现 相关代码已经上传到github:https://github.com/exploitht/leetcode-python 文中代码为了不动官网提供的初始 ...
- [五]java函数式编程归约reduce概念原理 stream reduce方法详解 reduce三个参数的reduce方法如何使用
reduce-归约 看下词典翻译: 好的命名是自解释的 reduce的方法取得就是其中归纳的含义 java8 流相关的操作中,我们把它理解 "累加器",之所以加引号是因为他并不仅仅 ...
- Spring Cloud Alibaba基础教程:Nacos的数据持久化
前情回顾: <Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现> <Spring Cloud Alibaba基础教程:支持的几种服务消费方式> ...
- javascript基础修炼(7)——Promise,异步,可靠性
开发者的javascript造诣取决于对[动态]和[异步]这两个词的理解水平. 一. 别人是开发者,你也是 Promise技术是[javascript异步编程]这个话题中非常重要的,它一度让我感到熟悉 ...
- Java开发笔记(十二)布尔变量论道与或非
在编程语言的设计之初,它们除了可以进行数学计算,还常常用于逻辑推理和条件判断.为了实现逻辑判断的功能,Java引入了一种布尔类型boolean,用来表示“真”和“假”.该类型的变量只允许两个取值,即t ...
- 驰骋工作流引擎JFlow与activiti的对比之2种结构化模式
1. 任意循环(Arbitrary Cycles) ACTIVITI : 某一个或多个活动可以反复执行. 例子:用户买了瓶汽水,拿到汽水后,中了一瓶,又去兑换了一瓶汽水,如果又中了,再去兑换一瓶汽水- ...
- clCreateBuffer和clCreateBuufer + clEnqueueWriteBuffer
有两种方式实现从主机到CL设备的数据传递, 第一种: cl_mem input = clCreateBuffer(context,CL_MEM_READ_ONLY,sizeof(float) * DA ...