There is a special square room with mirrors on each of the four walls.  Except for the southwest corner, there are receptors on each of the remaining corners, numbered `0`, `1`, and `2`.

The square room has walls of length p, and a laser ray from the southwest corner first meets the east wall at a distance q from the 0th receptor.

Return the number of the receptor that the ray meets first.  (It is guaranteed that the ray will meet a receptor eventually.)

Example 1:

Input: p = 2, q = 1
Output: 2
Explanation: The ray meets receptor 2 the first time it gets reflected back to the left wall.

Note:

  1. 1 <= p <= 1000
  2. 0 <= q <= p

这道题给了我们一个正方形的房间,说是四面都是镜子墙,然后在西南角有一个激光发射器,其余三个角都有接收装置,问我们最终激光会被哪个接收器接收。第一次读题时这句 "Return the number of the receptor that the ray meets first." 让博主理解错误了,以为是让返回接收器的个数,以为接收器也能反射激光到其对角的接收器,那么接收器2和0互相反射,就是返回经过了2个接收器,接收器1返回到反射点,就是返回经过了1个接收点,想的是一套一套的,结果人家让返回的是接收器的标号,个人觉得将 number 改为 index 会减少些歧义。无所谓了,反正最终搞懂了题意就行了。其实这道题的正确解法还挺难想的,因为大家很容易走进的误区就是研究反射角啥的,然后算具体反射到了哪一个位置,再算下一个位置,其实这样都将题目变复杂了。博主把这一类型归为脑筋急转弯 Brain Teaser,一般都有很巧妙的数学解法,并不需要太复杂的算法。

首先从最简单的情况开始分析,当p和q相等的时候,那么激光直接到达接收器1,当 p/q = 2 的时候,就如例子中所示,经过右边的镜面反射后到达左上角的接受器2。那么我们再来考虑下这三种情况 p/q = 3, p/q = 4, p/q = 3/2,并画出折射情况如下所示:

这里就有些比较好玩的规律了,我们知道激光遇到镜面是会发生折射的,但是假如没有镜面,就会仍然沿直线前进,那么对于 p/q = 3 时,若我们在右边增加大小相同的2个房间,则激光会到达右上角,由于第二个房间和原始房间是镜面对称的,而第三个房间和第二个房间也是镜面对称的,则第三个房间和原始房间就是一样的了,那么就可以假设一下,奇数房间和原始房间的布局相同。再来看上图中的 p/q = 4 时,我们在右边复制了三个房间,在第四个房间的时候,激光到达了右上角,而第偶数个房间的布局是跟原始房间称镜面反射的,则就是接受器2了。其实有些时候,我们不止要在右边复制房间,还需要在上面复制房间,比如当 p/q = 3/2 时,我们需要复制出一个 2x3 大小的矩阵出来,在水平方向共有三个房间,是奇数则水平方向和原始房间布局一致,但是竖直方向也复制了房间,那么竖直方向有偶数个房间,则竖直方向和原始房间成镜面反射,则最右上角为接收器0。

分析到这里,我们应该已经能总结出规律如下了:

  • p为奇数,q为奇数时,到达接收器1。
  • p为奇数,q为偶数时,到达接收器0。
  • p为偶数,q为奇数时,到达接收器2。

那你可能会有疑问了,为啥没有p和q均为偶数的情况呢?比如 p = 4, q = 2,其实只要我们画个图就知道,这个跟 p = 2, q = 1 的情况是一摸一样的,若p和q均为偶数,那么那么一定可以同时除以2,那么其实我们可以先对p和q进行判断,若二者同为偶数,则同时除以2,直到不同时为偶数时,然后再带入上面归纳的三种情况求解即可,参见代码如下:

解法一:

class Solution {
public:
int mirrorReflection(int p, int q) {
while (p % 2 == 0 && q % 2 == 0) {
p /= 2; q /= 2;
}
if (p % 2 == 0) return 2;
if (q % 2 == 0) return 0;
return 1;
}
};

其实我们可以进一步化简,将三种情况融为一个表达式即可,即 1 - p%2 + q%2,不信的话可以带数字验证一下,碉堡了有木有,参见代码如下:


解法二:

class Solution {
public:
int mirrorReflection(int p, int q) {
while (p % 2 == 0 && q % 2 == 0) {
p /= 2; q /= 2;
}
return 1 - p % 2 + q % 2;
}
};

其实不光是p和q同时为偶数的时候可以化简,只要p和q的最大公约数 Greatest Common Divisor 大于1时,都可以化简,比如,若 p = 6, q = 3 时跟 p = 2, q = 1 的情况也是一样,那我们就可以先求出p和q的最大公约数,然后用p和q分别除以这个最大公约数,再带入上面的那个一行公式求解即可,参见代码如下:


解法三:

class Solution {
public:
int mirrorReflection(int p, int q) {
return 1 - p / gcd(p, q) % 2 + q / gcd(p, q) % 2;
}
int gcd(int p, int q) {
return q ? gcd(q, p % q) : p;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/858

参考资料:

https://leetcode.com/problems/mirror-reflection/

https://leetcode.com/problems/mirror-reflection/discuss/141765/Java-short-solution-with-a-sample-drawing

https://leetcode.com/problems/mirror-reflection/discuss/141826/1-line-C%2B%2B-solution-using-gcd-only-4ms

https://leetcode.com/problems/mirror-reflection/discuss/141773/C%2B%2BJavaPython-1-line-without-using-any-package-or

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] Mirror Reflection 镜面反射的更多相关文章

  1. [Swift]LeetCode858. 镜面反射 | Mirror Reflection

    There is a special square room with mirrors on each of the four walls.  Except for the southwest cor ...

  2. 【LeetCode】858. Mirror Reflection 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  3. 858. Mirror Reflection

    There is a special square room with mirrors on each of the four walls.  Except for the southwest cor ...

  4. [LeetCode] Line Reflection 直线对称

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  5. Leetcode: Line Reflection

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  6. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  7. Uinty3d 镜面反射代码

    镜面反射代码 文件名MirrorReflection.cs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 ...

  8. [leetcode] 101. Symmetric Tree 对称树

    题目大意 #!/usr/bin/env python # coding=utf-8 # Date: 2018-08-30 """ https://leetcode.com ...

  9. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

随机推荐

  1. java控制多线程同时写一个文件

    最近出现一个需求,大体要做的就是控制多线程同时操作一个文件.当时第一个反应是不要用synchronized,太low了,然后我就使用了读写锁ReentrantReadWriteLock,然后写完静下来 ...

  2. jmeter分布式测试教程和远程的代理机无法连接网络的问题解决方法

    一.Jmeter分布式执行原理: 1.Jmeter分布式测试时,选择其中一台作为控制机(Controller),其它机器做为代理机(Agent). 2.执行时,Controller会把脚本发送到每台A ...

  3. 添加一个非模态对话框在revit中

    RequestHandler handler = new RequestHandler(); ExternalEvent exEvent = ExternalEvent.Create(handler) ...

  4. 关于codeforces国内访问卡顿慢的最新解决办法,谷歌字体库/屏蔽facebook链接

    在host里最后加上 方法起源来自于https://blog.csdn.net/qq_40693171/article/details/83623409 但是里面的360字体库已经停运http://w ...

  5. Andriod studio 目录结构

    新建一个项目后,大致有一下几个目录 1)gradle 目录 构建工具系统的jar和wrapper等,jar告诉了AS如何与系统安装的gradle构建联系. 2).idea 目录 AS生成的工程配置文件 ...

  6. Sprite子节点透明度不能跟随父节点变化的问题求解(转)

    原出处忘记了. [已解决]Sprite子节点透明度不能跟随父节点变化的问题求解 自己封装了一个按钮控件,点击的时候封装了一些动作,其中有透明度的变化. 当点击发生的时候,Sprite本体执行正常,但是 ...

  7. 记录一个EF连接查询的异常:the entity or complex type 'x' cannot be constructed in a linq to entities query

    问题解决连接:https://stackoverflow.com/questions/5325797/the-entity-cannot-be-constructed-in-a-linq-to-ent ...

  8. MySQL之排序、分组(五)

    一.排序 格式:select * from 表 order by 字段 asc|desc 1.查询所有的商品进行排序(升序asc.降序desc) mysql> select * from pro ...

  9. VS 编码规范---- 代码注释设置

    一个良好的代码风格在开发过程和后期维护过程中是必不可少的.每次在添加新类的时候都需要添加一些关于类的注释,包括创建时间.创建人.类的功能介绍.修改时间等一系列的信息,以方便以后的查找和快速了解.在Co ...

  10. Django—视图

    索引 一.URLconf 二.视图 三.HttpReqeust对象 3.1 QueryDict对象 3.2 GET和POST属性 四.HttpResponse对象 4.1 子类JsonResponse ...