『最短Hamilton路径 状态压缩DP』
<更新提示>
<第一次更新>状压DP入门
<正文>
最短Hamilton路径
Description
给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
Input Format
第一行一个整数n。 接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。 对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
Output Format
一个整数,表示最短Hamilton路径的长度。
Sample Input
4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0
Sample Output
4
解析
很容易想到的朴素解法是枚举全排列,时间复杂度\(O(n*!n)\),显然是会\(TLE\)的。注意到\(n<20\),我们考虑状态压缩\(DP\)。设\(f[i][S]\)代表当前遍历状态为\(S\),到了第\(i\)个点的最短长度。如何理解遍历状态\(S\)呢?我们把它当做一个二进制的\(01\)串,从右数第i位为如果为\(0\),就说明节点i没有被遍历到过,如果第\(i\)位为\(1\),则说明节点i被遍历到过了。我们将整个图的遍历状态记为一个二进制数,这就是状态压缩。
那么我们考虑如何\(DP\)。我们将编号记为从\(1\)开始的,那么初始状态就是\(f[1][1]=0\)。
这里我们需要先理解状态的查询和赋值操作:
1.
S&(1<<(i-1))
代表取出状态S的(从右往左)第i位
2.S|(1<<(i-1))
代表将状态S的(从右往左)第i位赋值为1
那么我们就可以得到状态转移方程了:$$f[j][S|(1<<(j-1))]=\min{f[i][S]+dis[i][j]}$$
需要满足节点\(j\)未访问,节点\(i\)已经访问过了。
状态的初值一开始均为正无穷,枚举\(S,i,j\)即可转移,时间复杂度\(O(n^2*2^n)\),目标状态为\(f[n][(1<<n)-1]\)。
\(Code:\)
#include<bits/stdc++.h>
using namespace std;
const int N=20;
int n,dis[N+5][N+5],f[N+5][(1<<N)+5],ans=0x3f3f3f3f;
inline void input(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&dis[i][j]);
}
inline void dp(void)
{
memset(f,0x3f,sizeof f);
f[1][1]=0;
for(int S=1;S<(1<<n);S++)
for(int i=1;i<=n;i++)
if(S&(1<<(i-1)))
for(int j=1;j<=n;j++)
if( not (S&(1<<(j-1))) )
f[j][S|(1<<(j-1))]=min(f[j][S|(1<<(j-1))],f[i][S]+dis[i][j]);
}
int main(void)
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
input();
dp();
printf("%d\n",f[n][(1<<n)-1]);
}
<后记>
『最短Hamilton路径 状态压缩DP』的更多相关文章
- 最短Hamilton路径-状压dp解法
最短Hamilton路径 时间限制: 2 Sec 内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...
- 完全图的最短Hamilton路径——状压dp
题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...
- # 最短Hamilton路径(二进制状态压缩)
最短Hamilton路径(二进制状态压缩) 题目描述:n个点的带权无向图,从0-n-1,求从起点0到终点n-1的最短Hamilton路径(Hamilton路径:从0-n-1不重不漏的每个点恰好进过一次 ...
- 最短Hamilton路径【状压DP】
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...
- 最短Hamilton路径(状压dp)
最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- 最短Hamilton路径 数位dp
最短Hamilton路径 #include<bits/stdc++.h> using namespace std; ; <<maxn][maxn]; int maps[maxn ...
- 0103 最短Hamilton路径【状压DP】
0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...
- POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...
随机推荐
- MDK5 设置project targents?如何实现的有知道的请共享一下谢谢感激不尽!!!!
就在刚刚阅读NRF51822相关的文档时遇到问题,官方给出了一份模板,我从我安装的example中找出了官方的列程,看到是soft config的方式配置的,于是根据列程的配置,自己新建了一个工程之后 ...
- 爬虫之urllib库
一.urllib库简介 简介 Urllib是Python内置的HTTP请求库.其主要作用就是可以通过代码模拟浏览器发送请求.它包含四个模块: urllib.request :请求模块 urllib.e ...
- centos7基于samba服务配置实例
需求: 账号建立:产研部门所有人员,产品.开发.测试.运维: 目录建立:各二级部门分别建立以部门名称为文件夹的目录: 初步权限管理:各部门成员对本部门目录有读写权限,对其他部门目录有读权限: 建立共享 ...
- github错误:fatal: remote origin already exists.
原文链接:http://blog.csdn.net/dengjianqiang2011/article/details/9260435 如果输入$ Git remote add origin git@ ...
- react生命周期函数
如图,可以把组件生命周期大致分为三个阶段: 第一阶段:是组件第一次绘制阶段,如图中的上面虚线框内,在这里完成了组件的加载和初始化: 第二阶段:是组件在运行和交互阶段,如图中左下角虚线框,这个阶段组 ...
- [AtCoder 2702]Fountain Walk - LIS
Problem Statement In the city of Nevermore, there are 108 streets and 108 avenues, both numbered fro ...
- su;su -;sudo;sudo -i;sudo su;sudo su - 之间的区别
今天我们来聊聊su;su -;sudo;sudo -i;sudo su;sudo su -他们之间的区别. su :su 在不加任何参数,默认为切换到root用户,但没有转到root用户家目录下,也就 ...
- BUAA-OO-第一单元总结
BUAA-OO第一单元博客总结 第一次作业总结 (1)类关系图 第一次作业类图关系简单,仅有一个Poly封装类以及一个Main主类调用Poly,Poly封装类内部完成了包括对象构造,求导,生成字符串的 ...
- laravel-elasticsearch 全文搜索设置
1.首先安装 jave环境 jdk 下载地址 ,我用的是最新版本的,有时版本要跟elasticsearch对应 2.安装elasticsearch 下载地址 3.安装Laravel scout 全文搜 ...
- Android Studio 错误: 非法字符: '\ufeff'
右下角:选UTF-8 convert一下,再重新编译..不知道为什么,本来好像就是UTF-8好奇怪. 还看到一个方法但我没试过,放在这里万一下次又遇见了这样的问题呢 右下角将UTF-8 convert ...