1.  标势、矢势:  $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf E}=-\cfrac{\p {\bf B}}{\p t} =\rot \cfrac{\p {\bf A}}{\p t}&\ra \exists\ \phi,\st -\n \phi={\bf E}+\cfrac{\p {\bf A}}{\p t}. \eea \eeex$$ 称 $\phi,{\bf A}$ 分别为电磁场的标势、矢势. 注意, 若 $\phi,{\bf A}$ 为电磁场的标势、矢势, 则 $$\bee\label{1.6.2:trans} \bea \phi'&=\phi- \cfrac{\p\psi}{\p t},\\ {\bf A}'&={\bf A}+\n \psi \eea \eee$$ 也是电磁场的标势、矢势. \eqref{1.6.2:trans} 称为规范变换. 虽然势有规范不定性, 但场在规范变换下不变.

2.  电磁场的标势、矢势 $\phi,{\bf A}$ 满足的方程: $$\bee\label{1. 6. 2:eq} \bea \cfrac{1}{c^2}\cfrac{\p^2\phi}{\p t^2}-\lap\phi&=\cfrac{\rho}{\ve_0},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}&=\mu_0{\bf j}.  \eea \eee$$ 即 $\phi,{\bf A}$ 分别满足以 $\rho,{\bf j}$ 为源的波动方程.

(1)  在 \eqref{1. 6. 2:eq} 的推导中须用到 Lorentz 条件: $$\bee\label{1. 6. 2:Lorentz} \Div{\bf A}+\cfrac{1}{c^2}\cfrac{\p\phi}{\p t}=0.  \eee$$ 而这可通过规范变换得到.

(2)  满足 \eqref{1. 6. 2:Lorentz} 的规范变换称为 Lorentz 规范. 另外, 称满足 $$\bex \Div{\bf A}=0 \eex$$ 的规范变换为 Coulomb 规范.

[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势的更多相关文章

  1. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

    1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$ 2.  动量守恒方程 $$\bex \cfrac{\p }{\p ...

  2. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  3. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  10. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

随机推荐

  1. Spring boot admin 节点状态一直为DOWN的排查

    项目中需要监控各个微服务节点的健康状态,找到了spring boot admin这个全家桶监控工具,它其实是Vue.js美化过的Spring Boot Actuator,官方的解释是: codecen ...

  2. JS第一部分--ECMAScript5.0标准语法 (JS基础语法)

    一,调试语句 二,JS的引入方式 三,变量的使用 四,基本的数据类型 4.1,基本数据类型转换 4.2,字符串的常用方法 五,复杂数据类型 5.1,Array(数组)及常用方法 六,流程控制( 逻辑与 ...

  3. 使用idea搭建Scala 项目

    主要内容 Intellij IDEA开发环境简介 Intellij IDEA Scala开发环境搭建 Intellij IDEA常见问题及解决方案 Intellij IDEA常用快捷键 1. Inte ...

  4. mmap:速度快+整块操作

    mmap使得可以将设备内存映射到用户空间,从而使得用户程序获得访问硬件的能力,mmap的动作需要由内核中的驱动来实现.在使用mmap映射后,用户程序对给定范围的内存的读写就变成了对设备内存的读写,也就 ...

  5. 正则表达式regex(golang版)

    代码: //File: main.go package main import ( "fmt" "regexp" ) func main() { r := re ...

  6. Oracle Metric sequence load elapsed time

    Oracle Metric sequence load elapsed time The sequence load elapsed time Oracle metric is the amount ...

  7. LOJ2396 JOISC2017 长途巴士 斜率优化

    传送门 将乘客按照\(D_i\)从小到大排序并重新标号.对于服务站\(j\),如果\(S_j \mod T \in (D_i , D_{i+1})\),那么可以少接一些水,在保证司机有水喝的情况下让编 ...

  8. Maven将远程包拉去到项目指定路径

    <build> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactI ...

  9. debugfs

    http://www.cnblogs.com/wwang/archive/2011/01/17/1937609.html

  10. python 基础篇练习题

    一.练习题 # 1.统计元组中所有数据属于字符串的个数,提示:isinstance() # 数据:t1 = (1, 2, '3', '4', 5, '6') # 结果:3 # 2.将以下数据存储为字典 ...