[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势
1. 标势、矢势: $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf E}=-\cfrac{\p {\bf B}}{\p t} =\rot \cfrac{\p {\bf A}}{\p t}&\ra \exists\ \phi,\st -\n \phi={\bf E}+\cfrac{\p {\bf A}}{\p t}. \eea \eeex$$ 称 $\phi,{\bf A}$ 分别为电磁场的标势、矢势. 注意, 若 $\phi,{\bf A}$ 为电磁场的标势、矢势, 则 $$\bee\label{1.6.2:trans} \bea \phi'&=\phi- \cfrac{\p\psi}{\p t},\\ {\bf A}'&={\bf A}+\n \psi \eea \eee$$ 也是电磁场的标势、矢势. \eqref{1.6.2:trans} 称为规范变换. 虽然势有规范不定性, 但场在规范变换下不变.
2. 电磁场的标势、矢势 $\phi,{\bf A}$ 满足的方程: $$\bee\label{1. 6. 2:eq} \bea \cfrac{1}{c^2}\cfrac{\p^2\phi}{\p t^2}-\lap\phi&=\cfrac{\rho}{\ve_0},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}&=\mu_0{\bf j}. \eea \eee$$ 即 $\phi,{\bf A}$ 分别满足以 $\rho,{\bf j}$ 为源的波动方程.
(1) 在 \eqref{1. 6. 2:eq} 的推导中须用到 Lorentz 条件: $$\bee\label{1. 6. 2:Lorentz} \Div{\bf A}+\cfrac{1}{c^2}\cfrac{\p\phi}{\p t}=0. \eee$$ 而这可通过规范变换得到.
(2) 满足 \eqref{1. 6. 2:Lorentz} 的规范变换称为 Lorentz 规范. 另外, 称满足 $$\bex \Div{\bf A}=0 \eex$$ 的规范变换为 Coulomb 规范.
[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势的更多相关文章
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- .Net Cache
在.net中有两个类实现了Cache HttpRuntime.Cache 应该程序使用的Cache,web也可以用 HttpContext.Current.Cache web上下文的Cache对象, ...
- 干货:Vue粒子特效(vue-particles插件)
转:https://www.jianshu.com/p/53199b842d25 image.png 图上那些类似于星座图的点和线,是由vue-particles生成的,不仅自己动,而且能与用户鼠标事 ...
- vue_ui使用
cnpm install -g @vue/cli 下载 vue -V 查看版本 vue ui 运行vue ui 这样在浏览器上就能看到vue图形界面 根据需求设置
- Linux操作系统上要慎用的6个命令及防范方法
Linux操作系统上要慎用的6个命令及防范方法 基于Linux平台工作的童鞋都知道Linux命令行使用起来非常高效和快捷,但有时候也很危险,尤其是在你不确定你自己在正在做什么时候(别笑,别以为自己真的 ...
- Jetson TX2(3)opencv3 打开usb摄像头
ubuntu2604 opencv3.4.0 https://blog.csdn.net/ultimate1212/article/details/80936175?utm_source=blogxg ...
- copy 和 deepcopy的区别
import copy a = [1, 2, 3, 4, ['a', 'b']] b = a # 引用,除非直接给a重新赋值,否则a变则b变,b变则a变 c = copy.copy(a) # 浅复制, ...
- docker WARNING: IPv4 forwarding is disabled 问题解决
问题: [yuyongxr@localhost ~]$sudo docker run -d --name nginx -p : nginx WARNING: IPv4 forwarding is di ...
- VS2010创建MVC4项目提示错误: 此模板尝试加载组件程序集 “NuGet.VisualStudio.Interop, Version=1.0.0.0, Culture=neutral,
在安装VS2010时没有安装MVC4,于是后面自己下载安装了(居然还要安装VS2010 SP1补丁包).装完后新建MVC项目时却提示: 错误: 此模板尝试加载组件程序集 “NuGet.VisualSt ...
- springcloud
基本术语 1.服务器 服务器:是提供计算服务的设备.由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力.服务器的构成:包括处理器.硬盘.内存.系统总线等,和通用 ...
- tensorflow分布式训练
https://blog.csdn.net/hjimce/article/details/61197190 tensorflow分布式训练 https://cloud.tencent.com/dev ...