[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势
1. 标势、矢势: $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf E}=-\cfrac{\p {\bf B}}{\p t} =\rot \cfrac{\p {\bf A}}{\p t}&\ra \exists\ \phi,\st -\n \phi={\bf E}+\cfrac{\p {\bf A}}{\p t}. \eea \eeex$$ 称 $\phi,{\bf A}$ 分别为电磁场的标势、矢势. 注意, 若 $\phi,{\bf A}$ 为电磁场的标势、矢势, 则 $$\bee\label{1.6.2:trans} \bea \phi'&=\phi- \cfrac{\p\psi}{\p t},\\ {\bf A}'&={\bf A}+\n \psi \eea \eee$$ 也是电磁场的标势、矢势. \eqref{1.6.2:trans} 称为规范变换. 虽然势有规范不定性, 但场在规范变换下不变.
2. 电磁场的标势、矢势 $\phi,{\bf A}$ 满足的方程: $$\bee\label{1. 6. 2:eq} \bea \cfrac{1}{c^2}\cfrac{\p^2\phi}{\p t^2}-\lap\phi&=\cfrac{\rho}{\ve_0},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}&=\mu_0{\bf j}. \eea \eee$$ 即 $\phi,{\bf A}$ 分别满足以 $\rho,{\bf j}$ 为源的波动方程.
(1) 在 \eqref{1. 6. 2:eq} 的推导中须用到 Lorentz 条件: $$\bee\label{1. 6. 2:Lorentz} \Div{\bf A}+\cfrac{1}{c^2}\cfrac{\p\phi}{\p t}=0. \eee$$ 而这可通过规范变换得到.
(2) 满足 \eqref{1. 6. 2:Lorentz} 的规范变换称为 Lorentz 规范. 另外, 称满足 $$\bex \Div{\bf A}=0 \eex$$ 的规范变换为 Coulomb 规范.
[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势的更多相关文章
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- Django REST framework基础:解析器和渲染器
解析器 解析器的作用 解析器的作用就是服务端接收客户端传过来的数据,把数据解析成自己可以处理的数据.本质就是对请求体中的数据进行解析. 在了解解析器之前,我们要先知道Accept以及ContentTy ...
- KAPTCHA验证码使用步骤
使用kaptcha可以方便的配置: · 验证码的字体 · 验证码字体的大小 · 验证码字体的字体颜色 · 验证码内容的范围(数字,字母,中文汉字!) · 验证码图片的大小,边框,边框粗细,边框颜色 · ...
- Java 8 新特性7-方法引用、继承
(原) 方法引用: 方法引用有4种: 1.静态方法引用:类名::静态方法名 在java中,对集合的排序,我们常用java提供的 Collections.sort(List<T> list, ...
- web框架开发-Django视图层
视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. . ...
- day16--包的认识、循环导入、绝对导入、相对导入、模块的搜索路径等(待续)
''' 一系列功能模块的集合体 -- 包就是管理功能相近的一系列模块的文件夹 -- 该文件夹包含一个特殊文件__init__.py -- 文件夹名就是包名,产生的包名就是指向__init__.py的全 ...
- 基础数据类型:整型int、布尔值bool、字符串str、与for循环
1.整型 int() p2 long 长整型 p3 全部都是整型 2.布尔值 bool() True --- int() int(True) int() --- True bool(int) 注意点: ...
- offsetLeft、offsetX等
https://blog.csdn.net/w390058785/article/details/80461845
- SpringCloud(1)服务注册与发现Eureka
1.创建1个空白的工程 2.创建2个model工程 一个module(即SpringBoot)工程作为服务注册中心,即Eureka Server,另一个作为Eureka Client. Eureka ...
- Each path can be reduced to a simple path
Recently, I made a small conclusion, but I found it is found and well-founded in some textbook. So I ...
- 好的LCT板子和一句话
typedef long long ll; const int maxn = 400050; struct lct { int ch[maxn][2], fa[maxn], w[maxn]; bool ...