spark-shell的Scala的一些方法详解
Tom,DataBase,80
Tom,Algorithm,50
Tom,DataStructure,60
Jim,DataBase,90
Jim,Algorithm,60
Jim,DataStructure,80
.......
根据给定的数据在spark-shell中通过编程来计算以下内容
(1) 该系总共有多少学生;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val par = lines.map(row=>row.split(",")(0))
val distinct_par = par.distinct() //去重操作
distinct_par.count //取得总数
答案为:265 人
(2) 该系共开设来多少门课程;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val par = lines.map(row=>row.split(",")(1))//根据,切分的每行数据的第二列进行map
val distinct_par = par.distinct()//去重
distinct_par.count//取总数
答案为 8 门
(3) Tom 同学的总成绩平均分是多少;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val pare = lines.filter(row=>row.split(",")(0)=="Tom")
pare.foreach(println)
Tom,DataBase,26
Tom,Algorithm,12
Tom,OperatingSystem,16
Tom,Python,40
Tom,Software,60
pare.map(row=>(row.split(",")(0),row.split(",")(2).toInt))
.mapValues(x=>(x,1)).//mapValues是对值的操作,不操作key使数据变成(Tom,(26,1))
reduceByKey((x,y) => (x._1+y._1,x._2 + y._2))//接着需要按key进行reduce,让key合并当将Tom进行reduce后 这里的(x,y) 表示的是(26,1)(12,1)
.mapValues(x => (x._1 / x._2))//接着要对value进行操作,用mapValues()就行啦
.collect()
//res9: Array[(String, Int)] = Array((Tom,30))
Tom 同学的平均分为 30 分
(4) 求每名同学的选修的课程门数;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val pare = lines.map(row=>(row.split(",")(0),row.split(",")(1)))
pare.mapValues(x => (x,1))//数据变为(Tom,(DataBase,1)),(Tom,(Algorithm,1)),(Tom,(OperatingSystem,1)),(Tom,(Python,1)),(Tom,(Software,1))
.reduceByKey((x,y) => (" ",x._2 + y._2))//数据变为(Tom,( ,5))
.mapValues(x =>x._2)//数据变为(Tom, 5)
.foreach(println)
答案共 265 行
(5) 该系 DataBase 课程共有多少人选修
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase")filter方法允许你提供一个判断条件(函数),来过滤集合元素
pare.count
res1: Long = 126
答案为 126 人
(6) 各门课程的平均分是多少;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val pare = lines.map(row=>(row.split(",")(1),row.split(",")(2).toInt))
pare.mapValues(x=>(x,1)).reduceByKey((x,y) => (x._1+y._1,x._2 + y._2)).mapValues(x => (x._1 / x._2)).collect()
res0: Array[(String, Int)] = Array((Python,57), (OperatingSystem,54), (CLanguage,50),
(Software,50), (Algorithm,48), (DataStructure,47), (DataBase,50), (ComputerNetwork,51))
答案为: (CLanguage,50) (Python,57) (Software,50) (OperatingSystem,54) (Algorithm,48) (DataStructure,47) (DataBase,50) (ComputerNetwork,51)
(7)使用累加器计算共有多少人选了 DataBase 这门课。
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/Data01.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase").map(row=>(row.split(",")(1),1))
val accum = sc.longAccumulator("My Accumulator")//累加器函数Accumulator
pare.values.foreach(x => accum.add(x))
accum.value
res19: Long = 126
答案:共有 126 人
2.编写独立应用程序实现数据去重
对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其
中重复的内容,得到一个新文件 C。下面是输入文件和输出文件的一个样例,供参考。
输入文件 A 的样例如下:
20170101 x
20170102 y
20170103 x
20170104 y
20170105 z
20170106 z
输入文件 B 的样例如下:
20170101 y
20170102 y
20170103 x
20170104 z
20170105 y
根据输入的文件 A 和 B 合并得到的输出文件 C 的样例如下:
20170101 x
20170101 y
20170102 y
20170103 x
20170104 y
20170104 z
20170105 y
20170105 z
20170106 z
eclipse代码
package my.scala
import org.apache.spark.{SparkConf, SparkContext}
object case2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("reduce")
val sc = new SparkContext(conf)
sc.setLogLevel("ERROR")
//获取数据
val two = sc.textFile("hdfs://192.168.85.128:9000/quchong")
two.filter(_.trim().length>0) //需要有空格。
.map(line=>(line.trim,""))//全部值当key,(key value,"")
.groupByKey()//groupByKey,过滤重复的key value ,发送到总机器上汇总
.sortByKey() //按key value的自然顺序排序
.keys.collect().foreach(println) //所有的keys变成数组再输出
//第二种有风险
two.filter(_.trim().length>0)
.map(line=>(line.trim,"1"))
.distinct()
.reduceByKey(_+_)
.sortByKey()
.foreach(println) //reduceByKey,在本机suffle后,再发送一个总map,发送到一个总机器上汇总,(汇总要压力小)
//groupByKey,发送本机所有的map,在一个机器上汇总(汇总压力大)
//如果数据在不同的机器上,则会出现先重复数据,distinct,reduceBykey,只是在本机上去重,谨慎一点的话,在reduceByKey后面需要加多一个distinct }
}
3.编写独立应用程序实现求平均值问题
每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生
名字,第二个是学生的成绩;编写 Spark 独立应用程序求出所有学生的平均成绩,并输出到
一个新文件中。下面是输入文件和输出文件的一个样例,供参考。
Algorithm 成绩:
小明 92
小红 87
小新 82
小丽 90
Database 成绩:
小明 95
小红 81
小新 89
小丽 85
Python 成绩:
小明 82
小红 83
小新 94
小丽 91
平均成绩如下:
(小红,83.67)
(小新,88.33)
(小明,89.67)
(小丽,88.67)
package my.scala
import org.apache.spark.{SparkConf, SparkContext}
object pingjunzhi {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("reduce")
val sc = new SparkContext(conf)
sc.setLogLevel("ERROR") val fourth = sc.textFile("hdfs://192.168.85.128:9000/pingjunzhi") val res = fourth.filter(_.trim().length>0).map(line=>(line.split("\t")(0).trim(),line.split("\t")(1).trim().toInt)).groupByKey().map(x => {
var num = 0.0
var sum = 0
for(i <- x._2){
sum = sum + i
num = num +1
}
val avg = sum/num
val format = f"$avg%1.2f".toDouble
(x._1,format)
}).collect.foreach(x => println(x._1+"\t"+x._2))
}
}
spark-shell的Scala的一些方法详解的更多相关文章
- (转)shell中test命令方法详解
test命令用法.功能:检查文件和比较值 shell中test命令方法详解 原文:https://www.cnblogs.com/guanyf/p/7553940.html 1)判断表达式 if te ...
- telnet 命令使用方法详解,telnet命令怎么用
telnet 命令使用方法详解,telnet命令怎么用? 文章类型:电脑教程 原创:天诺时空 什么是Telnet? 对于Telnet的认识,不同的人持有不同的观点,可以把Telnet当成一种通信协 ...
- [转帖]Vim编辑器使用方法详解
Vim编辑器使用方法详解 程序员小新人学习 2018-12-16 12:26:23 转载于https://www.cnblogs.com/libaoliang/articles/6961676.htm ...
- 【Python】Linux crontab定时任务配置方法(详解)
CRONTAB概念/介绍 crontab命令用于设置周期性被执行的指令.该命令从标准输入设备读取指令,并将其存放于“crontab”文件中,以供之后读取和执行. cron 系统调度进程. 可以使用它在 ...
- Linux中让alias设置永久生效的方法详解
Linux中让alias设置永久生效的方法详解 一.问题描述 1.有很多时候我们想要将很多操作作为一个步骤,那么在不作为系统的服务的情况下,别名是我们最好的选择,但是发现别名只能在一次会话中生效,重启 ...
- Python学习之旅—生成器对象的send方法详解
前言 在上一篇博客中,笔者带大家一起探讨了生成器与迭代器的本质原理和使用,本次博客将重点聚焦于生成器对象的send方法. 一.send方法详解 我们知道生成器对象本质上是一个迭代器.但是它比迭代器对 ...
- session的使用方法详解
session的使用方法详解 Session是什么呢?简单来说就是服务器给客户端的一个编号.当一台WWW服务器运行时,可能有若干个用户浏览正在运正在这台服务器上的网站.当每个用户首次与这台WWW服务器 ...
- Kooboo CMS - Html.FrontHtml[Helper.cs] 各个方法详解
下面罗列了方法详解,每一个方法一篇文章. Kooboo CMS - @Html.FrontHtml().HtmlTitle() 详解 Kooboo CMS - Html.FrontHtml.Posit ...
- HTTP请求方法详解
HTTP请求方法详解 请求方法:指定了客户端想对指定的资源/服务器作何种操作 下面我们介绍HTTP/1.1中可用的请求方法: [GET:获取资源] GET方法用来请求已被URI识别的资源.指定 ...
随机推荐
- 遍历文件路径python版,java版
python: # 获取所有txt路径列表 file_list = [] def gci(filepath): files=os.listdir(filepath) for fi in files: ...
- Ubuntu16.04下Hadoop的本地安装与配置
一.系统环境 os : Ubuntu 16.04 LTS 64bit jdk : 1.8.0_161 hadoop : 2.6.4 部署时使用的用户名为hadoop,下文中需要使用用户名的地方请更改为 ...
- APP,H5测试要点
APP测试重点 一,运行测试 运行过程中,是否有加载提示: 运行速度是否流畅: 各个模块之间的切换是否正常: 二,更新测试:打开旧版app时,是否有更新提示,且在不同的手机版本上都能更新成功:打开新版 ...
- B. Nirvana Codeforces Round #549 (Div. 2) (递归dfs)
---恢复内容开始--- Kurt reaches nirvana when he finds the product of all the digits of some positive integ ...
- css 颜色表示法
css颜色值主要有三种表示方法: (1)颜色名表示,如:red红色,gold金色 (2)rgb表示,如:rgb(255,0,0)表示红色 (3)16进制数值表示,如:#ff0000表示红色,这种可以简 ...
- ftp搭建安装
本文摘要:https://jingyan.baidu.com/article/380abd0a77ae041d90192cf4.html FTP 是File Transfer Protocol(文件传 ...
- __x__(23)0907第四天__浏览器默认样式
浏览器默认样式: 为了美观,浏览器为了在页面没有样式时,也可以有一个较好的显示效果,默认设置若干 margin,padding. 作为开发人员,在CSS编写最初,一般都会清除默认样式, ...
- vue_简介_渐进式 js 框架_内置指令_自定义指令_自定义插件
vue 尤雨溪 华裔 Google 工程师 遵循 MVVM 模式 编码简洁,体积小,运行效率高,适合 移动 / PC 端 开发 动态构建用户界面: 异步获取后台数据,展现到页面 渐进式 js 框架 渐 ...
- javaweb 与jsp页面的交互流程 (初次接触时写)
javaweb 与jsp页面的交互流程 javaweb项目目录 1. javaweb项目的一般目录: 2. jsp 页面一般情况下放在 top(前台页面) back(后台页面) 3. 后台代码 放在s ...
- [ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile (default-compile) on project triage: Compilation failure [ERROR] No compiler is provided in this environment.
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile (default-c ...