【论文速读】Fangfang Wang_CVPR2018_Geometry-Aware Scene Text Detection With Instance Transformation Network
Han Hu——【ICCV2017】WordSup_Exploiting Word Annotations for Character based Text Detection
作者和代码
关键词
文字检测、多方向、直接回归、$$xywh\theta$$ 、multi-stage、监督学习
方法亮点
- 采用单词、文本行的标注信息进行监督学习来辅助字符检测
- 在ICDAR2013数据集上F值90+,后来的方法能超过这篇文章的寥寥无几
方法概述
利用Faster RCNN或SSD等目标检测框架检测单个字符,并利用单词、文本行的标注信息进行监督学习来辅助字符检测器的训练(字符模型和mask进行交替训练),最后采用图模型来进行文本行合并、LSTM空格检测来进行单词切割等后处理。
文章出发点
各式各样的文字(中英、曲线文本、公式)等排列布局不同,但最小单元都是字符。所以,检测字符具有通用性。但目前有字符的标注数据集太少了,大部分都是以单词、文本行的方式标注的。故这篇文章想要利用这些单词、文本行的标注来帮助字符检测。主要是利用了已标注信息进行监督训练。
Figure 1: The visual hierarchies for various language texts under different scenarios. Different languages and scenarios may differ in hierarchy, but they are all formed by a basic element, character
检测流程
Figure 3: Our pipeline. There are two modules, character detector and text structure analysis. The pipeline is flexible for various scenarios ascribed to the atomicity and universality of characters.
方法细节
character detector
利用Faster RCNN或者SSD等就可以。进行的修改包括:
- 因为字符很小,所以进行predition的feature map采用更底层higher resolution的feature map(1/4大小)
- 采用了hard patch mining方案来解决背景干扰问题。每1万次iteration后把false positives加大权重;
detecotr网络结构
Figure 4: Our basic detection network. The network inherits from the VGG16 network model [36].
字符模型训练
采用update mask和update network交替的方式进行训练。
Figure 2: Illustration of our word supervision training approach for a character model. Two alternative steps are conducted: giving the current model, compute a response map which is then used together with word annotations to get a character center mask (red and green points); giving the character center mask, supervise the training of character model.
Figure 5: Updated character responses and the corresponding character masks during word supervised training on ICDAR15 datasets. The initial model in the second column is trained by 5k warmup iterations on synthetic data alone. The 3 ∼ 6th columns are responses during the word supervised training, where the epoch number means for ICDAR15 datasets. For illustration, we use bounding box annotations rather than the original quadrangles in training. Both the responses and character candidates are colored by their scores (indexed by colormap in Matlab)
如何更新character mask?
给定word box和character response map,确定character位置和大小: 通过最大生成树算法最大化公式(1)来选择字符集合。
Bchars和Banno分别是选择的字符和单词的bounding box。$$\lambda_1和\lambda_2$$分别表示协方差矩阵C(字符的点坐标)的第一大和第二大的特征根。$$s_1$$倾向于找到bounding box里coverage更大的字符,$$s_2$$倾向于找到同一行直线的字符;
如何更新模型?
利用公式(1)得到的分数来更新loss。
字符结构分析
字符合并
采用Text-flow图最小费用流的方式来合并字符。只是将原本只能处理水平的改为可以处理倾斜文本。原来图上一个节点表示一个字符(character-pairs:分数高、距离近、尺度相近),现在一个节点表示两个靠得比较近的字符。采用这种方式之后,可以定义更高阶的cost。例如角度差(两条节点的角度差就是两条直线的角度差)。最后还是采用最小费用流算法来求最优文本线集合。
文本线模型估计和矫正
- 文本线估计: 0阶-水平和竖直,1阶-倾斜文本,2阶-任意多边形piecewise linear model。
- 模型矫正:TPS进行矫正
单词切割
- LSTM-based word blank detection方法
实验结果
各大数据集的数据标注信息统计
Faster RCNN和SSD的对比
Figure 6: Character detection performance of our basic detection network, the faster RCNN and SSD methods on the VGG SynthText-part datasets. Four variants of our method are presented. The first term in brackets indicates the used supervision source. The second term indicates the used hard negative mining strategy, with “one” representing one-level hard negative mining and “two” representing two-level hard negative mining.
- ICDAR2013(Detval)
ICDAR2015
其他复杂场景(曲文、公式等)
Figure 8: Applied to various scenarios. The top row shows detected characters, with colors indicating character scores (indexed by colormap in Matlab). The bottom row shows results of structure analysis.
总结与收获
这篇方法和WeText的思路一致,利用word和textline的annotation来监督训练字符级detector。不一样的地方在于训练方式是mask和model交替训练。而且明显后处理比WeText更工程化的多,不但处理水平也能处理倾斜、曲文。关键是最后ICDAR2013的结果真的太好了,所以后来有的文章argue说是因为利用了更多的监督信息(字符比文本线等信息更多)。
【论文速读】Fangfang Wang_CVPR2018_Geometry-Aware Scene Text Detection With Instance Transformation Network的更多相关文章
- 【论文速读】Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping
Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrappi ...
- 【论文速读】Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution
Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution 作者和代码 caffe版代码 关键词 文字 ...
- 【论文速读】Pan He_ICCV2017_Single Shot Text Detector With Regional Attention
Pan He_ICCV2017_Single Shot Text Detector With Regional Attention 作者和代码 caffe代码 关键词 文字检测.多方向.SSD.$$x ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- 论文速读(Chuhui Xue——【arxiv2019】MSR_Multi-Scale Shape Regression for Scene Text Detection)
Chuhui Xue--[arxiv2019]MSR_Multi-Scale Shape Regression for Scene Text Detection 论文 Chuhui Xue--[arx ...
- 论文速读(Yongchao Xu——【2018】TextField_Learning A Deep Direction Field for Irregular Scene Text)
Yongchao Xu--[2018]TextField_Learning A Deep Direction Field for Irregular Scene Text Detection 论文 Y ...
- 【论文速读】XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection
XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection 作者和代码 caffe代码 关键词 ...
- 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)
Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...
- 【论文速读】ChengLin_Liu_ICCV2017_Deep_Direct_Regression_for_Multi-Oriented_Scene_Text_Detection
ChengLin Liu_ICCV2017_Deep Direct Regression for Multi-Oriented Scene Text Detection 作者 关键词 文字检测.多方向 ...
随机推荐
- PostgreSQL自学笔记:3 数据库的基本操作
3 数据库的基本操作 3.1 创建数据库 3.1.1 使用对象浏览器创建数据库 [Server] -> PostgreSQL 9.6 -> 数据库,右击 -> 创建 通常: 数据库: ...
- Everything at Once
Everything at Once As sly as a fox as strong as an ox ♥ sly 英 [slaɪ] 美 [slaɪ] adj. 狡猾的:淘气的:诡密的 比较级 s ...
- css3 @keyframes、transform详解与实例
一.transform 和@keyframes动画的区别: @keyframes动画是循环的,而transform 只执行一遍. 二.@keyframes CSS3中添加的新属性animation是用 ...
- 【Tomcat】Tomcat配置JVM参数步骤
这里向大家描述一下如何使用Tomcat配置JVM参数,Tomcat本身不能直接在计算机上运行,需要依赖于硬件基础之上的操作系统和一个java虚拟机.您可以选择自己的需要选择不同的操作系统和对应的JDK ...
- Java_String
整理一下java中关于String的内容.Spring应该是java中使用最频繁的类了,那么今天我们仔细研究下关于Spring的内容. 定义: String类是一个字符串类型的类,使用" ...
- 基于贝叶斯算法实现简单的分类(java)
参考文章:https://blog.csdn.net/qq_32690999/article/details/78737393 项目代码目录结构 模拟训练的数据集 核心代码 Bayes.java pa ...
- centos7查看网卡UUID
https://blog.csdn.net/kepa520/article/details/50222049 查看网卡UUID nmcli con show 查看mac地址 nmcli device ...
- 输入正整数n,求各位数字和
import java.util.Scanner; /** * @author:(LiberHome) * @date:Created in 2019/3/5 10:24 * @description ...
- 源码包安装php7.2
含有的命令:yum,wget,tar,./configure,make,cp,ln,source,php -v ==安装== [root@ycj ~]# yum -y install libxml2 ...
- linux ---docker篇
Docker docker是什么? docker最初是dotCloud公司创始人Solomom Hykes在法国期间发起的一个公司内部项目,它是基于dotCloud公司多年云服务技术的一次革新,并在2 ...