题意

给你 \(n\) 个元素,\(m\) 个方程。

每个方程形如

\[\begin{align}
\gcd(x_i, y_i)=c_i\\
\mathrm{lcm}(x_i,y_i) = d_i
\end{align}
\]

之类的形式。

询问这个方程组是否有解。有 \(T\) 组数据。

\(1 \le T \le 10, 1 \le n, m \le 200\) 。

题解

这道题是一个很巧妙的 \(2-SAT\) 。不会的话,可以参考 2-SAT 问题与解法小结

我们可以这样设计变量,令变量 \(a[i][j][k]\) 表示是否有 \(\displaystyle p^j | x_i\) ,上面限制就能表示出来啦。

一开始觉得每个质因子可以单独考虑,后来发现要一起考虑,因为别的 \(gcd, lcm\) 会限制这个的次数。

具体来说是这样的。

  1. \(\gcd(x_i, y_i) = c_i\)

    那么我们首先考虑 \(x_i, y_i\) 中与 \(c_i\) 互质的质因子 \(p\) 。

    对于这些质因子 \(p​\) , \(x, y​\) 不能同时出现我们连一条 \(a[x][p][1] \to \neg a[y][p][1]​\) 的边(注意要连逆否命题的边)。

    那么我们接下来可以考虑,假设 \(c_i\) 存在质因子 \(p\) 的最高次数为 \(k\) 。

    那么 \(x_i, y_i\) 两个数对于 \(p\) 的最低次数为 \(k\) ,且必有一个数次数刚好为 \(k\) ,那么连三条边就行了。

    首先强制使得 \(a[x][p][k], a[y][p][k]\) 为真。(也就是连一条从真到假的边就行了)

    然后如果 \(a[x][p][k + 1]\) 为真,那么要使得 \(a[y][p][k + 1]\) 为假。(逆否也要)

    这是因为不能存在两个次数都 \(\ge k+1\) 。

  2. \(\mathrm{lcm} (x_i, y_i) = d_i\)

    同样先考虑 \(x_i, y_i\) 中与 \(d_i\) 互质的质因子 \(p\) 。

    对于这些质因子 \(p\) , \(x, y\) 不能包含,所以强制使得 \(a[x][p][1], a[y][p][1]\) 为假。

    那么我们接下来可以考虑,假设 \(d_i\) 存在质因子 \(p\) 的最高次数为 \(k\) 。

    同上, \(x_i, y_i\) 两个数对于 \(p\) 的最高次数为 \(k\) ,且必有一个数次数刚好为 \(k\) ,那么连三条边就行了。

    强制使得 \(a[x][p][k+1], a[y][p][k+1]\) 为假。

    然后如果 \(a[x][p][k]\) 为假,那么要使得 \(a[y][p][k]\) 为真。(逆否也要)

连完这些,还要记得 \(a[x][p][k]\) 为真时,\(a[x][p][k - 1]\) 也要为真。

然后就可以轻松愉悦的码码码了。

然后对于 \(a[x][p][k]\) 标号的时候,可以用 std :: map<int, map<int, map<int, int> > > id 来实现qwq

STL 大法好!!!

复杂度是 \(O(Tm \log 10^9)\) 的。

总结

对于 \(\gcd, \mathrm{lcm}\) 的题,可以对于指数进行考虑,就变成了高维的取 \(\min\) 和取 \(\max\) 问题。

代码

建议 抄 学习一下我的代码

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define fir first
#define sec second using namespace std; typedef pair<int, int> PII; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("1318.in", "r", stdin);
freopen ("1318.out", "w", stdout);
#endif
} const int N = 2e4 + 1e3;
struct Two_Sat { int n; vector<int> G[N];
void Init(int n) {
this -> n = n;
For (i, 2, n << 1 | 1) G[i].clear();
} void Add(int x, int xv, int y, int yv) {
x = x << 1 | xv; y = y << 1 | yv;
G[x].push_back(y); G[y ^ 1].push_back(x ^ 1);
} int sccno[N], scc_cnt, dfn[N], lowlink[N], sta[N], top, clk;
void Tarjan(int u, int fa = 0) {
dfn[u] = lowlink[u] = ++ clk; sta[++ top] = u;
for (int v : G[u])
if (!dfn[v]) Tarjan(v, u), chkmin(lowlink[u], lowlink[v]);
else if (!sccno[v]) chkmin(lowlink[u], dfn[v]);
if (dfn[u] == lowlink[u]) {
++ scc_cnt; int now;
do sccno[now = sta[top --]] = scc_cnt; while (u != now);
}
} bool Solve(int n) {
this -> n = n;
For (i, 2, n << 1 | 1) dfn[i] = sccno[i] = 0; scc_cnt = clk = 0;
For (i, 2, n << 1 | 1) if (!dfn[i]) Tarjan(i);
For (i, 1, n) if (sccno[i << 1] == sccno[i << 1 | 1]) return false;
return true;
} } T; int n, m; struct Equation {
int x, y, val, opt;
} lt[N]; set<int> fac[N];
void Get_Factor(int x, int val) {
For (i, 2, sqrt(val + .5)) if (!(val % i)) {
while (!(val % i)) val /= i; fac[x].insert(i);
}
if (val > 1) fac[x].insert(val);
} int Size; map<int, map<int, map<int, int> > > id;
int Get_Id(int x, int p, int k) {
if (!id[p][x][k]) id[p][x][k] = ++ Size; return id[p][x][k];
} void Build_Again() {
for (auto i : id) for (auto j : i.sec) {
int Last = 0; for (auto k : j.sec) {
if (Last) T.Add(k.sec, 1, Last, 1); Last = k.sec;
}
}
id.clear();
} void Modify(int x, int val) {
T.Add(x, val ^ 1, x, val);
} void Resolve(int x, int y, int opt, int val) { set<int> fx = fac[x]; set<int> fy = fac[y];
int tmp = val;
For (i, 2, sqrt(val + .5)) if (!(val % i)) {
while (!(val % i)) val /= i; fx.erase(i); fy.erase(i);
}
if (val > 1) fx.erase(val), fy.erase(val); val = tmp; if (opt == 1) {
for (auto prime : fx) Modify(Get_Id(x, prime, 1), 0);
for (auto prime : fy) Modify(Get_Id(y, prime, 1), 0);
} else {
vector<int> V;
set_union(fx.begin(), fx.end(), fy.begin(), fy.end(), inserter(V, V.begin()));
for (int prime : V) {
T.Add(Get_Id(x, prime, 1), 1, Get_Id(y, prime, 1), 0);
T.Add(Get_Id(y, prime, 1), 1, Get_Id(x, prime, 1), 0);
}
} register int i = 2;
while (val > 1) {
if (!(val % i)) {
int cnt = 1; while (!(val % i)) val /= i, ++ cnt;
if (!opt) {
Modify(Get_Id(x, i, cnt), 1);
Modify(Get_Id(y, i, cnt), 1);
T.Add(Get_Id(x, i, cnt + 1), 1, Get_Id(y, i, cnt + 1), 0);
} else {
Modify(Get_Id(x, i, cnt + 1), 0);
Modify(Get_Id(y, i, cnt + 1), 0);
T.Add(Get_Id(x, i, cnt), 0, Get_Id(y, i, cnt), 1);
}
}
++ i; if (i * i > val) i = val;
}
} int main () { File(); for (int cases = read(); cases; -- cases) { Size = 0; n = read(); m = read();
For (i, 1, n) fac[i].clear();
For (i, 1, m) {
static char str[5];
scanf ("%s", str + 1);
int opt = str[1] == 'L', x = read(), y = read(), val = read();
lt[i] = (Equation) {x, y, val, opt};
Get_Factor(x, val); Get_Factor(y, val);
} For (i, 1, m) Resolve(lt[i].x, lt[i].y, lt[i].opt, lt[i].val); Build_Again(); puts(T.Solve(Size) ? "Solution exists" : "Solution does not exist"); T.Init(Size); } return 0;
}

51nod 1318 最大公约数与最小公倍数方程组(2-SAT)的更多相关文章

  1. 求N个数的最大公约数和最小公倍数(转)

    除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...

  2. Java程序设计之最大公约数和最小公倍数

    题目:输入两个正整数number1和number2,求其最大公约数和最小公倍数. 算法:较大数和较小数取余,较小数除余数,一直到余数为0时,为最大公约数(辗转相除法):最大公倍数numbe1*numb ...

  3. 辗转相除法求最大公约数和最小公倍数【gcd】

    要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } ...

  4. PAT - 基础 - 最大公约数和最小公倍数

    题目: 本题要求两个给定正整数的最大公约数和最小公倍数. 输入格式: 输入在一行中给出2个正整数M和N(<=1000). 输出格式: 在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1 ...

  5. c 求两个整数的最大公约数和最小公倍数

    //求最大公约数是用辗转相除法,最小公倍数是根据公式 m,n 的 最大公约数* m,n最小公倍数 = m*n 来计算 #include<stdio.h> //将两个整数升序排列 void ...

  6. c语言求最大公约数和最小公倍数

    求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因 ...

  7. Java经典案例之-“最大公约数和最小公倍数”

    /** * 描述:输入两个正整数m和n,求其最大公约数和最小公倍数.(最大公约数:最大公约数, * 也称最大公因数.最大公因子,指两个或多个整数共有约数中最大的一个.) * (最小公倍数:几个数共有的 ...

  8. 求m和n的最大公约数和最小公倍数

    题目:输入两个正整数m和n,求其最大公约数和最小公倍数. 做这道题时,特意去查看了一下什么是最大公约数和最小公倍数. 后来直接去看了求解的思想,相信到企业中不会要求你闭门造车,若已有先例,可以研究之后 ...

  9. HDU 2503 a/b + c/d(最大公约数与最小公倍数,板子题)

    话不多说,日常一水题,水水更健康!┗|`O′|┛ 嗷~~ a/b + c/d Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768 ...

随机推荐

  1. HA总结:AWS 网络连接

    单数据中心 网络HA总结 参考:https://d1.awsstatic-china.com/aws-answers/AWS_Single_Data_Center_HA_Network_Connect ...

  2. JMeter接口测试 (二) ~ 参数化

    对应qq群号:616961231 上篇内容介绍了jmeter的基本使用, 略微提了如何做参数化,  本篇对参数化做进一步深入讲解, 参数化可以将一个变量使用不同数据, 比如有多个用户下单购买商品,调用 ...

  3. Android PAI (PlayAutoInstall)预装APK 功能

    最近刚找到工作,是手机方案公司,刚接触手机系统预装的APP,以及解决方案MTK平台下预装APP的bug,也接触到了Launcher的东西. 然后接触到了第一个需求 PAI预装APK功能 下面是我用到的 ...

  4. Linux中VSFTP的配置

    配置VSFTP服务器: 1.安装VSFTP,可以参考Linux 中yum的配置来安装: yum installvsftpd.x86_64 -y 2.修改SELinux: setenforce 0 查看 ...

  5. [20190409]pre_page_sga=true与连接缓慢的问题.txt

    [20190409]pre_page_sga=true与连接缓慢的问题.txt --//曾经遇到11g下设置pre_page_sga=true启动缓慢的问题(没有使用hugepages).--//链接 ...

  6. C#的自动拼接Sql语句Insert方法及思路

    思路: 1.想想插入语句,大概是这样的一个框架:INSERT INTO 表名 (数据库列名) values (值) 2.这里要3个变量是不固定的,分别是:表名.数据库列名.值: a.表名我们这里很容易 ...

  7. CFS调度器(1)-基本原理

    首先需要思考的问题是:什么是调度器(scheduler)?调度器的作用是什么?调度器是一个操作系统的核心部分.可以比作是CPU时间的管理员.调度器主要负责选择某些就绪的进程来执行.不同的调度器根据不同 ...

  8. c/c++ 多线程 等待一次性事件 异常处理

    多线程 等待一次性事件 异常处理 背景:假设某个future在等待另一个线程结束,但是在被future等待的线程里发生了异常(throw一个异常A),这时怎么处理. 结果:假设发生了上面的场景,则在调 ...

  9. spring3:多数据源配置使用

    0. properties ####################################mysql########################################### d ...

  10. wxPython树控件

    1.树控件 树(tree)是一种通过层次结构展示信息的控件,如下图所示是树控件示例,左窗口中是树控件,在wxPython中树控件类是wx.TreeCtrl. wx.TreeCtrl中一个常用的方法有: ...