题解:

不会FWT,只能水40分了

首先,要观察出的性质就是:

选出的集合要满足所有数亦或等于0,而在其中任选子集都可以满足条件,答案就等于sigma(2^size(s))

这样dp一波显然就可以O(na)了(由性质可知转移到新状态*2)

然后考虑数很少的

发现同一个数是奇数就是ai偶数就是0

所以仍旧这么dp一下 也就是转移的时候乘(2^1+2^3+2^5....) 不变的同理

C. 【UNR #2】黎明前的巧克力的更多相关文章

  1. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  2. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  3. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  4. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

  5. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  6. 「UNR#2」黎明前的巧克力

    「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...

  7. 【UNR #2】黎明前的巧克力 解题报告

    [UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...

  8. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  9. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  10. @uoj - 310@ 【UNR #2】黎明前的巧克力

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开 ...

随机推荐

  1. 04-MySQL的存储引擎和列的常用类型

    1. MySQL中的数据库分类        2. MySQL中的存储引擎 MySQL中的数据用各种不同的技术存储在文件(或者内存)中.这些技术中的每一种技术都使用不同的存储机制.索引技巧.锁定水平并 ...

  2. IP地址分类以及子网划分

    五类IP地址段 根据上表的说明,我们可以知道: 你只要知道 IP 的第一个十进制数,就能够约略了解到该 IP 属于哪一个等级, 以及同网域 IP 数量有多少. 这也是为啥我们上头选了 192.168. ...

  3. The android command is deprecated

    新版的SDK tools中的android命令已经不支持 android create project,用起来很不顺手. The "android" command is depr ...

  4. Java 连接 SqlServer工具类

    1.下载 server2008R2驱动jar包 下载jar包 http://www.microsoft.com/zh-cn/download/confirmation.aspx?id=21599 2. ...

  5. HDU 1162 Eddy's picture (最小生成树 prim)

    题目链接 Problem Description Eddy begins to like painting pictures recently ,he is sure of himself to be ...

  6. Python装饰器实现异步回调

    def callback(func): def inner(obj, *args, **kwargs): res = func(obj, *args, **kwargs) if kwargs.get( ...

  7. python队列queue 之优先级队列

    import queue as Q def PriorityQueue_int(): que = Q.PriorityQueue() que.put(10) que.put(1) que.put(5) ...

  8. Spring Boot 多模块项目创建与配置 (一) (转)

    Spring Boot 多模块项目创建与配置 (一) 最近在负责的是一个比较复杂项目,模块很多,代码中的二级模块就有9个,部分二级模块下面还分了多个模块.代码中的多模块是用maven管理的,每个模块都 ...

  9. Linux内存管理--物理内存分配【转】

    转自:http://blog.csdn.net/myarrow/article/details/8682819 1. First Fit分配器 First Fit分配器是最基本的内存分配器,它使用bi ...

  10. Centos6.5使用ELK(Elasticsearch + Logstash + Kibana) 搭建日志集中分析平台实践

    Centos6.5安装Logstash ELK stack 日志管理系统 概述:   日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的 ...