C. 【UNR #2】黎明前的巧克力
题解:
不会FWT,只能水40分了
首先,要观察出的性质就是:
选出的集合要满足所有数亦或等于0,而在其中任选子集都可以满足条件,答案就等于sigma(2^size(s))
这样dp一波显然就可以O(na)了(由性质可知转移到新状态*2)
然后考虑数很少的
发现同一个数是奇数就是ai偶数就是0
所以仍旧这么dp一下 也就是转移的时候乘(2^1+2^3+2^5....) 不变的同理
C. 【UNR #2】黎明前的巧克力的更多相关文章
- 【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...
- [UOJ UNR#2 黎明前的巧克力]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...
- [UOJ310][UNR #2]黎明前的巧克力
uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
- 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- 【UNR #2】黎明前的巧克力 解题报告
[UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- @uoj - 310@ 【UNR #2】黎明前的巧克力
目录 @description@ @solution@ @accepted code@ @details@ @description@ Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开 ...
随机推荐
- 04-MySQL的存储引擎和列的常用类型
1. MySQL中的数据库分类 2. MySQL中的存储引擎 MySQL中的数据用各种不同的技术存储在文件(或者内存)中.这些技术中的每一种技术都使用不同的存储机制.索引技巧.锁定水平并 ...
- IP地址分类以及子网划分
五类IP地址段 根据上表的说明,我们可以知道: 你只要知道 IP 的第一个十进制数,就能够约略了解到该 IP 属于哪一个等级, 以及同网域 IP 数量有多少. 这也是为啥我们上头选了 192.168. ...
- The android command is deprecated
新版的SDK tools中的android命令已经不支持 android create project,用起来很不顺手. The "android" command is depr ...
- Java 连接 SqlServer工具类
1.下载 server2008R2驱动jar包 下载jar包 http://www.microsoft.com/zh-cn/download/confirmation.aspx?id=21599 2. ...
- HDU 1162 Eddy's picture (最小生成树 prim)
题目链接 Problem Description Eddy begins to like painting pictures recently ,he is sure of himself to be ...
- Python装饰器实现异步回调
def callback(func): def inner(obj, *args, **kwargs): res = func(obj, *args, **kwargs) if kwargs.get( ...
- python队列queue 之优先级队列
import queue as Q def PriorityQueue_int(): que = Q.PriorityQueue() que.put(10) que.put(1) que.put(5) ...
- Spring Boot 多模块项目创建与配置 (一) (转)
Spring Boot 多模块项目创建与配置 (一) 最近在负责的是一个比较复杂项目,模块很多,代码中的二级模块就有9个,部分二级模块下面还分了多个模块.代码中的多模块是用maven管理的,每个模块都 ...
- Linux内存管理--物理内存分配【转】
转自:http://blog.csdn.net/myarrow/article/details/8682819 1. First Fit分配器 First Fit分配器是最基本的内存分配器,它使用bi ...
- Centos6.5使用ELK(Elasticsearch + Logstash + Kibana) 搭建日志集中分析平台实践
Centos6.5安装Logstash ELK stack 日志管理系统 概述: 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的 ...