P2502 [HAOI2006]旅行 并查集
题目描述
Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。速度变化太快使得游客们很不舒服,因此从一个景点前往另一个景点的时候,大家都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。
输入输出格式
输入格式:
第一行包含两个正整数,N和M。
接下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。
最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。
输出格式:
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。
输入输出样例
3 2
1 2 2
2 3 4
1 3
2 要求所经过的路程的最大权值尽可能小 最小权值尽可能大 使得 最大权值/最小权值 最小
可以先将所有边从小到大排序好
然后枚举最小权值i 然后j从i开始往m遍历 (当遍历过程中正好联通时立刻退出 (贪心原理) ) 犯了一个巨大错误:如果不是全局变量一定要初始化 我因为没有初始化然后wa的点每次都不一样!!!!!
还有就是注意细节
排序的思想很好
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 6000+6
int f[N]; int gcd(int x,int y)
{
return y==?x:gcd(y,x%y);
} int find1(int x)
{
return x==f[x]?x:f[x]=find1(f[x]);
}
void union1(int a,int b)
{
int x=find1(a);
int y=find1(b);
if(x!=y)
f[x]=y;
} struct node
{
int s,e,len; }edge[N]; bool cmp(node a,node b)
{
return a.len<b.len;
} int main()
{
int n,m;
RII(n,m); rep(i,,m)
RIII(edge[i].s,edge[i].e,edge[i].len);
int s,e;
RII(s,e); int ans1=,ans2=;
sort(edge+,edge++m,cmp);
rep(i,,m)
{
rep(j,,n)
f[j]=j;
int j;
for(j=i;j<=m;j++)
{
if(find1(edge[j].s)==find1(edge[j].e))continue;
union1(edge[j].s,edge[j].e);
if(find1(s)==find1(e))break;
}
if(i==&&(find1(s)!=find1(e)) )
{
printf("IMPOSSIBLE");
return ;
}
if(find1(s)!=find1(e))break;
if(ans1*edge[i].len>=ans2*edge[j].len)
ans1=edge[j].len,ans2=edge[i].len;
}
int x=gcd(ans1,ans2);
if (x==ans2) printf("%d\n",ans1/ans2); else printf("%d/%d\n",ans1/x,ans2/x);
}
P2502 [HAOI2006]旅行 并查集的更多相关文章
- P2502 [HAOI2006]旅行——暴力和并查集的完美结合
P2502 [HAOI2006]旅行 一定要看清题目数据范围再决定用什么算法,我只看着是一个蓝题就想到了记录最短路径+最小生成树,但是我被绕进去了: 看到只有5000的边,我们完全可以枚举最小边和最大 ...
- P2502 [HAOI2006]旅行
P2502 [HAOI2006]旅行有些问题光靠直觉是不靠谱的,必须有简单的证明,要么就考虑到所有情况.这个题我想的是要么见最小生成树,要么建最大生成树,哎,我sb了一种很简单的情况就能卡掉在最小生成 ...
- 洛谷P2502[HAOI2006]旅行
题目: Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,-,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也许 ...
- luogu题解P2502[HAOI2006]旅行--最小生成树变式
题目链接 https://www.luogu.org/problemnew/show/P2502 分析 一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE 这时我就有个想 ...
- luogu P2502 [HAOI2006]旅行
传送门 边数只有5000,可以考虑\(O(m^2)\)算法,即把所有边按边权升序排序,然后依次枚举每条边\(i\),从这条边开始依次加边,加到起点和终点在一个连通块为止.这个过程可以用并查集维护.那么 ...
- BZOJ 1050 旅行(并查集)
很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstr ...
- P2502 [HAOI2006]旅行 最小生成树
思路:枚举边集,最小生成树 提交:1次 题解:枚举最长边,添加较小边. #include<cstdio> #include<iostream> #include<algo ...
- BZOJ 1050: [HAOI2006]旅行comf( 并查集 )
将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...
- BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)
[HAOI2006]旅行comf Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点 ...
随机推荐
- buildroot构建项目(一)---buildroot介绍
1.1 什么是buildroot Buildroot是Linux平台上一个构建嵌入式Linux系统的框架.整个Buildroot是由Makefile脚本和Kconfig配置文件构成的.你可以和编译Li ...
- u-boot移植(二)---修改前工作:代码流程分析1
一.代码执行总体流程图 1.1 代码路径 U-boot.lds (arch\arm\cpu) vectors.S (arch\arm\lib) start.S (arch\arm\cpu\arm920 ...
- IDAPython学习(一)
1.概述 IDAPython在IDA中集成了Python解释器,除了提供了Python功能外,使用这个插件还可以编写实现IDC脚本语言的所有Python脚本. IDAPython显著优势在于,它可以充 ...
- POJ1251 Jungle Roads【最小生成树】
题意: 首先给你一个图,需要你求出最小生成树,首先输入n个节点,用大写字母表示各节点,接着说有几个点和它相连,然后给出节点与节点之间的权值.拿第二个样例举例:比如有3个节点,然后接下来有3-1行表示了 ...
- B - 集合选数 (状压DP)
题目链接:https://cn.vjudge.net/contest/281960#problem/B 题目大意:中文题目 具体思路: 我们通过构造矩阵, x , 3x,9x,27x 2x,6x,18 ...
- Java的IO流——(七)
目录结构:
- Python中的元类
从前面"Python对象"文章中了解到,在Python中一切都是对象,类可以创建实例对象,但是类本身也是对象. class C(object): pass c = C() prin ...
- 腾讯云启动数据库进程,提示No such host is known
回想一下,系统是否切换过外网IP,切换过则检查/etc/hosts文件中IP和主机名对应关系 现象:出错前一直做域名解析
- 利用mysqltuner工具对mysql数据库进行优化
mysqltuner工具使用,本工具建议定期运行,发现目前MYSQL数据库存在的问题及修改相关的参数 工具的下载及部署 解决环境依赖,因为工具是perl脚本开发的,需要perl脚本环境 # yun i ...
- Unicode范围预览
链接: https://www.zhangxinxu.com/study/201611/show-character-by-charcode.php?range=4E00-9FBB 备注: Unico ...