概述

mysql分区表概述:google搜索一下;

RANGE COLUMNS partitioning

主要测试mysql分区表的性能;

  • load 500w 条记录:大约在10min左右;
  • batch insert 1.9w条记录(没建立索引):存在500w条记录的情况下批量插入,速度很快,基本1s左右;
  • batch insert 1.9w条记录(建立1个索引):存在500w条记录的情况下批量插入,速度变慢,基本3s左右(建立的索引越多,速度会越慢);
  • 查询:通过where对分区进行过滤,使用了表分区之后,性能提升很明显;
  • 建立索引查询时的性能:数据量时,B+TREE索引若需要进行回表查询(无法索引覆盖),则性能很差;
  • 建立索引查询时的性能:数据量不大时,B+TREE索引性能不错(8w时的数据量,性能不如无索引的性能);
  • 索引覆盖 vs 非索引覆盖: 速度相差十几倍;
  • 多列索引,索引顺序影响:性能相差20倍;

性能对比

如下数据都是查询多次的平均值(首次查询时,耗时都比较长)

耗时 未使用索引 使用索引 未分区表 分区表 特点 备注
load data 8 min 26.03 sec 11 min 11.01 sec 非分区表的插入性能好些
batch insert 0.29 sec 0.56 sec 3000-records 批量插入性能差不多
batch insert 1.85 sec 1.4 sec 1.9w-records 批量插入性能差不多
batch insert 未测试 3~4 sec 1.9w-records 索引建立的越多,插入越慢
query1 3.38 sec 3.36 sec count(*),没有where 性能差不多
query2 4 sec 0.6 sec 将分区作为过滤条件 分区表的性能,提升了好多倍
query3 5.7 sec 1.8 sec 将分区作为过滤条件,group by 分区表的性能,提升了3倍左右
query4 1.26s 26s 使用了B+Tree索引,产生了大量的随机IO 使用索引虽然查询条数减少,性能反而下降的厉害
query5

表结构

未分区表

| performance_metirc_host_min10_hour | CREATE TABLE `performance_metirc_host_min10_hour` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`pool_id` char(36) NOT NULL COMMENT '资源池ID',
`host_id` char(36) NOT NULL COMMENT '主机ID',
`indicator_key` varchar(64) NOT NULL COMMENT '指标key',
`value` double DEFAULT NULL COMMENT '指标值',
`resource_type` varchar(64) NOT NULL COMMENT '资源类型',
`create_at` datetime NOT NULL COMMENT '最近一次添加或更新的时间',
`business_id` char(36) DEFAULT NULL COMMENT '业务系统ID',
`organization_id` char(36) DEFAULT NULL COMMENT '部门ID',
`vpc_id` char(36) DEFAULT NULL COMMENT 'vpc维度',
`security_id` char(36) DEFAULT NULL COMMENT '安全域ID',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5046203 DEFAULT CHARSET=utf8 COMMENT='该表用于保存裸金属指标项数据'

分区表

根据indicator_key创建分区表;

主键使用:PRIMARY KEY (id,indicator_key)而不是PRIMARY KEY (id)

原因:使用mysql分区表的限制,分区的列必须包含在所有的唯一索引或主键中;

| performance_metirc_host_part_min10_hour | CREATE TABLE `performance_metirc_host_part_min10_hour` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`pool_id` char(36) COLLATE utf8_bin NOT NULL COMMENT '资源池ID',
`host_id` char(36) COLLATE utf8_bin NOT NULL COMMENT '主机ID',
`indicator_key` varchar(64) COLLATE utf8_bin NOT NULL COMMENT '指标key',
`value` double DEFAULT NULL COMMENT '指标值',
`resource_type` varchar(64) COLLATE utf8_bin NOT NULL COMMENT '资源类型',
`create_at` datetime NOT NULL COMMENT '最近一次添加或更新的时间',
`business_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '业务系统ID',
`organization_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '部门ID',
`vpc_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT 'vpc维度',
`security_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '安全域ID',
PRIMARY KEY (`id`,`indicator_key`)
) ENGINE=InnoDB AUTO_INCREMENT=4999308 DEFAULT CHARSET=utf8 COLLATE=utf8_bin
/*!50500 PARTITION BY RANGE COLUMNS(indicator_key)
(PARTITION bm_cpu VALUES LESS THAN ('bm_statistic_cpu') ENGINE = InnoDB,
PARTITION bm_disk VALUES LESS THAN ('bm_statistic_disk') ENGINE = InnoDB,
PARTITION bm_mem VALUES LESS THAN ('bm_statistic_mem') ENGINE = InnoDB,
PARTITION vm_cpu VALUES LESS THAN ('vm_statistic_cpu') ENGINE = InnoDB,
PARTITION vm_disk VALUES LESS THAN ('vm_statistic_disk') ENGINE = InnoDB,
PARTITION vm_mem VALUES LESS THAN ('vm_statistic_mem') ENGINE = InnoDB,
PARTITION pmax VALUES LESS THAN (MAXVALUE) ENGINE = InnoDB) */ |

导入数据 (load)

数据准备:

  1. 使用Java生成数据(代码见下文);
  2. 记录条数:500W条;
  3. 使用load的方式导入数据;

非分区表

MySQL [test]> load data local infile '/opt/data/tmp/hostpartSql2.data' into table performance_metirc_host_min10_hour fields terminated by ',' enclosed by '\'';
Query OK, 4999314 rows affected, 65535 warnings (8 min 26.03 sec)
Records: 5000000 Deleted: 0 Skipped: 686 Warnings: 4999692 MySQL [test]> select count(*) from performance_metirc_host_min10_hour;
+----------+
| count(*) |
+----------+
| 4999314 |
+----------+
1 row in set (3.41 sec)

总耗时: 8 min 26.03 sec;

分区表

MySQL [test]> load data local infile '/opt/data/tmp/hostpartSql2.data' into table performance_metirc_host_part_min10_hour fields terminated by
Query OK, 4999361 rows affected, 65535 warnings (11 min 11.01 sec)
Records: 5000000 Deleted: 0 Skipped: 639 Warnings: 4999692 MySQL [test]> select count(*) from performance_metirc_host_part_min10_hour;
+----------+
| count(*) |
+----------+
| 4999361 |
+----------+
1 row in set (3.36 sec)

总耗时: 10 min 52.22 sec;

查看各分区的数据分布情况

MySQL [test]> select partition_name, TABLE_SCHEMA,  table_rows from information_schema.partitions where table_name='performance_metirc_host_part_min10_hour';
+----------------+--------------+------------+
| partition_name | TABLE_SCHEMA | table_rows |
+----------------+--------------+------------+
| bm_cpu | test | 154 |
| bm_disk | test | 803897 |
| bm_mem | test | 803297 |
| vm_cpu | test | 802386 |
| vm_disk | test | 802738 |
| vm_mem | test | 802532 |
| pmax | test | 804355 |
+----------------+--------------+------------+

从上面可以看出,各分区的记录分布比较平均,每一个分区的数据大约都在80万左右;


批量插入3000、1.9w条记录(没建立索引时)

sql语句如下所示(完整sql没有列举完)

INSERT INTO performance_metirc_host_min10_hour(pool_id,host_id,indicator_key,value,resource_type,create_at,business_id,organization_id,vpc_id,security_id) VALUES
('7b8f0f5e2fbb4d9aa2d5fd55466d638e', 'fd623404-301a-402a-a57c-b6202737d218', 'vm_statistic_cpu_avg_util_percent', '0.056361832611832606', 'vm', '2017-12-01 06:00:00', 'a02f53f285804dda82dc7d1817513c70', '1da69607a73349bb909e65294e44c3a5', null, null),
('7b8f0f5e2fbb4d9aa2d5fd55466d638e', '003c958b-2286-4933-a30f-6c050ec0ae37', 'vm_statistic_cpu_avg_util_percent', '0.05548400673400674', 'vm', '2017-12-09 06:00:00', 'a02f53f285804dda82dc7d1817513c70', '1da69607a73349bb909e65294e44c3a5', null, null),
...
...
...
;

非分区表

1.9w条数据:平均时间1s左右;

MySQL [test]> use test;
MySQL [test]> source /opt/data/tmp/insert3000Record.sql;
Query OK, 3033 rows affected (0.29 sec)
Records: 3033 Duplicates: 0 Warnings: 0 MySQL [test]> source /opt/data/tmp/insert19000Records.sql;
Query OK, 18654 rows affected (1.85 sec--10次的平均值)
Records: 18654 Duplicates: 0 Warnings: 0

分区表

1.9w条数据:平均时间1s左右;

MySQL [test]> source /opt/data/tmp/insert3000Record.sql;
Query OK, 3033 rows affected (0.56 sec)
Records: 3033 Duplicates: 0 Warnings: 0 MySQL [test]> source /opt/data/tmp/insert19000Records.sql;
Query OK, 18654 rows affected (1.40 sec--10次的平均值)
Records: 18654 Duplicates: 0 Warnings: 0

批量插入1.9w条记录(建立1个索引)

alter table performance_metirc_host_part_min10_hour add key indicator_create_busi_idx(indicator_key, create_at, business_id);

批量查询测试:1.6s~8.65s, 平均时间:3~4s

MySQL [test]> source /opt/data/tmp/insert19000Records.sql;
Query OK, 18654 rows affected (3.51 sec)
Records: 18654 Duplicates: 0 Warnings: 0

批量插入1.9w条记录(建立多个索引)

索引如下:

 PRIMARY KEY (`id`,`indicator_key`),
KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`),
KEY `indicator_busi_create_idx` (`indicator_key`,`business_id`,`create_at`)

批量查询测试:1.6s~9.5s, 平均时间:4s

MySQL [test]> source /opt/data/tmp/insert19000Records.sql;
Query OK, 18654 rows affected (3.51 sec)
Records: 18654 Duplicates: 0 Warnings: 0

查询数据

Query1:没有进行分区过滤

example1:

//count统计,没有进行分区过滤
select count(*) from performance_metirc_host_min10_hour;
select count(*) from performance_metirc_host_part_min10_hour;

example2:

//没有进行分区过滤
select distinct(create_at) from performance_metirc_host_min10_hour;
select distinct(create_at) from performance_metirc_host_part_min10_hour; MySQL [test]> explain partitions select distinct(create_at) from performance_metirc_host_part_min10_hour \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: performance_metirc_host_part_min10_hour
partitions: bm_cpu,bm_disk,bm_mem,vm_cpu,vm_disk,vm_mem,pmax //全部分区都使用了
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 4822392
Extra: Using temporary
1 row in set (0.00 sec)

Query2:

非分区表

平均时间:4s

  • 没有分区信息;
  • 没有建立索引;
  • 遍历表:查询了500w条记录
MySQL [test]> select avg(value) from performance_metirc_host_min10_hour where indicator_key = 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' ;
+-------------------+
| avg(value) |
+-------------------+
| 50.09309208798831 |
+-------------------+
1 row in set (4.09 sec) MySQL [test]> select max(value) from performance_metirc_host_min10_hour where indicator_key = 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' ;
+-------------------+
| max(value) |
+-------------------+
| 99.99980456042323 |
+-------------------+
1 row in set (3.50 sec) MySQL [test]> explain partitions select avg(value) from performance_metirc_host_min10_hour where indicator_key = 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: performance_metirc_host_min10_hour
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 5042030 // 查询了500w条数据
Extra: Using where
1 row in set (0.00 sec)

分区表

平均时间:0.6s

  • 使用了分区信息;
  • 没有建立索引;
  • 遍历表:查询了80w~92w条记录,比非分区表少查询了6倍多(刚刚是分区的个数);
MySQL [test]> select avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' ;
+-------------------+
| avg(value) |
+-------------------+
| 50.09288924799467 |
+-------------------+
1 row in set (0.60 sec) MySQL [test]> select max(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' ;
+-------------------+
| max(value) |
+-------------------+
| 99.99980456042323 |
+-------------------+
1 row in set (0.60 sec) MySQL [test]> explain partitions select avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: performance_metirc_host_part_min10_hour
partitions: vm_cpu //只使用了vm_cpu分区
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 802386 // 只查询了80w条数据
Extra: Using where
1 row in set (0.00 sec) MySQL [test]> explain partitions select avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'vm_statistic_disk_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: performance_metirc_host_part_min10_hour
partitions: vm_mem // 只使用了vm_mem分区
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 929035 // 值查询了92w条数据
Extra: Using where
1 row in set (0.00 sec) ERROR: No query specified

Query3:

非分区表

平均时间:5.7 sec

MySQL [test]> select avg(value) from performance_metirc_host_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00'  group by organization_id;
+--------------------+
| avg(value) |
+--------------------+
| 50.0384388700016 |
| 49.954251371279 |
| 50.1629822975072 |
+--------------------+
9 rows in set (5.59 sec) MySQL [test]> select max(value) from performance_metirc_host_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00' group by organization_id;
+-------------------+
| max(value) |
+-------------------+
| 99.99964338156543 |
| 99.99855115581629 |
| 99.99941828293112 |
+-------------------+
9 rows in set (5.86 sec) MySQL [test]> select max(value) from performance_metirc_host_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00' group by business_id;
+-------------------+
| max(value) |
+-------------------+
| 99.99964338156543 |
| 99.99898161250623 |
| 99.99980456042323 |
+-------------------+
11 rows in set (5.50 sec) MySQL [test]> select avg(value) from performance_metirc_host_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00' group by business_id;
+--------------------+
| avg(value) |
+--------------------+
| 50.1993472498974 |
| 50.04430780009459 |
| 50.078605604109285 |
+--------------------+
11 rows in set (5.57 sec)

分区表

平均时间:1.8s

MySQL [test]> select max(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00'  group by organization_id;
+-------------------+
| max(value) |
+-------------------+
| 99.99818300251297 |
| 99.99855115581629 |
| 99.99941828293112 |
+-------------------+
9 rows in set (1.86 sec) MySQL [test]> select avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00' group by organization_id;
+--------------------+
| avg(value) |
+--------------------+
| 50.0384388700016 |
| 49.954023140979096 |
| 50.16278417450607 |
+--------------------+
9 rows in set (1.86 sec) MySQL [test]> select max(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id;
+-------------------+
| max(value) |
+-------------------+
| 99.99536010412046 |
| 99.99898161250623 |
| 99.99980456042323 |
+-------------------+
11 rows in set (1.24 sec) MySQL [test]> select avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 02:50:00' group by business_id;
+--------------------+
| avg(value) |
+--------------------+
| 50.1993472498974 |
| 50.285359967063464 |
| 50.078605604109285 |
+--------------------+
11 rows in set (1.77 sec)

Query4:使用B+TREE索引--回表查询-查询性能反而大幅度降低

查询语句:

select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour
where indicator_key= 'bm_statistic_mem_avg_util_percent'
and
create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00'
group by business_id order by value asc;

未添加索引

  • 平均查询时间:1.26s(10次的平均结果)
  • 总查询条数:80w,使用了全表扫描;
  • 使用了 vm_cpu 分区:大大提升了性能
MySQL [test]> select  indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00'  group by business_id order by value asc;
+-----------------------------------+--------------------+
| indicator_key | value |
+-----------------------------------+--------------------+
| bm_statistic_mem_avg_util_percent | 49.845570215053264 |
| bm_statistic_mem_avg_util_percent | 49.90994276843408 |
| bm_statistic_mem_avg_util_percent | 50.01579830123528 |
| bm_statistic_mem_avg_util_percent | 50.036187114557514 |
| bm_statistic_mem_avg_util_percent | 50.056310301051525 |
| bm_statistic_mem_avg_util_percent | 50.1082718123528 |
| bm_statistic_mem_avg_util_percent | 50.116061996684614 |
| bm_statistic_mem_avg_util_percent | 50.15219690174755 |
| bm_statistic_mem_avg_util_percent | 50.1848819477595 |
| bm_statistic_mem_avg_util_percent | 50.2105660859758 |
| bm_statistic_mem_avg_util_percent | 50.384555005273285 |
+-----------------------------------+--------------------+
11 rows in set (1.45 sec) MySQL [test]> explain select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id order by value asc;
+----+-------------+-----------------------------------------+------+---------------+------+---------+------+--------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+------+---------------+------+---------+------+--------+----------------------------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | ALL | NULL | NULL | NULL | NULL | 802386 | Using where; Using temporary; Using filesort |
+----+-------------+-----------------------------------------+------+---------------+------+---------+------+--------+----------------------------------------------+ MySQL [test]> explain partitions select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id order by value asc;
+----+-------------+-----------------------------------------+------------+------+---------------+------+---------+------+--------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+------------+------+---------------+------+---------+------+--------+----------------------------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | vm_cpu | ALL | NULL | NULL | NULL | NULL | 802386 | Using where; Using temporary; Using filesort |
+----+-------------+-----------------------------------------+------------+------+---------------+------+---------+------+--------+----------------------------------------------+
1 row in set (0.00 sec)

索引 indicator_create_busi_idx

此索引无法使用BusinessId,因为create_at一般为范围查询;

KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`),

添加索引后的查询时间:26s(10次的平均结果),性能急剧下滑

  • 查询总条数:40w;
  • 使用了filesort文件排序;
  • 使用了索引:indicator_create_busi_idx(indicator_key, create_at, business_id), 查询性能反而降低了20倍左右
  • 只使用了 vm_cpu 分区: 大大提升了性能;

详细见下面:

alter table performance_metirc_host_part_min10_hour add key indicator_create_busi_idx(indicator_key, create_at, business_id);

// 只使用了 vm_cpu 分区: 提升了性能
MySQL [test]> explain partitions select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id order by value asc;
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | vm_cpu | ref | indicator_create_busi_idx | indicator_create_busi_idx | 194 | const | 401193 | Using where; Using temporary; Using filesort |
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+ MySQL [test]> explain select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id order by value asc;
+----+-------------+-----------------------------------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | ref | indicator_create_busi_idx | indicator_create_busi_idx | 194 | const | 401193 | Using where; Using temporary; Using filesort |
+----+-------------+-----------------------------------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
1 row in set (0.00 sec) MySQL [test]> show create table performance_metirc_host_part_min10_hour;
| performance_metirc_host_part_min10_hour | CREATE TABLE `performance_metirc_host_part_min10_hour` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`pool_id` char(36) COLLATE utf8_bin NOT NULL COMMENT '资源池ID',
`host_id` char(36) COLLATE utf8_bin NOT NULL COMMENT '主机ID',
`indicator_key` varchar(64) COLLATE utf8_bin NOT NULL COMMENT '指标key',
`value` double DEFAULT NULL COMMENT '指标值',
`resource_type` varchar(64) COLLATE utf8_bin NOT NULL COMMENT '资源类型',
`create_at` datetime NOT NULL COMMENT '最近一次添加或更新的时间',
`business_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '业务系统ID',
`organization_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '部门ID',
`vpc_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT 'vpc维度',
`security_id` char(36) COLLATE utf8_bin DEFAULT NULL COMMENT '安全域ID',
PRIMARY KEY (`id`,`indicator_key`),
KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`)
) ENGINE=InnoDB AUTO_INCREMENT=10287524 DEFAULT CHARSET=utf8 COLLATE=utf8_bin
/*!50500 PARTITION BY RANGE COLUMNS(indicator_key)
(PARTITION bm_cpu VALUES LESS THAN ('bm_statistic_cpu') ENGINE = InnoDB,
PARTITION bm_disk VALUES LESS THAN ('bm_statistic_disk') ENGINE = InnoDB,
PARTITION bm_mem VALUES LESS THAN ('bm_statistic_mem') ENGINE = InnoDB,
PARTITION vm_cpu VALUES LESS THAN ('vm_statistic_cpu') ENGINE = InnoDB,
PARTITION vm_disk VALUES LESS THAN ('vm_statistic_disk') ENGINE = InnoDB,
PARTITION vm_mem VALUES LESS THAN ('vm_statistic_mem') ENGINE = InnoDB,
PARTITION pmax VALUES LESS THAN (MAXVALUE) ENGINE = InnoDB) */ |

索引 indicator_busi_create_idx

KEY `indicator_busi_create_idx` (`indicator_key`,`business_id`,`create_at`)
//注意并非(索引列的顺序不同):KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`),

添加索引后的查询时间:26s(10次的平均结果),性能急剧下滑

  • 查询总条数:40w;
  • 使用了filesort文件排序;
  • 使用了索引:indicator_create_busi_idx(indicator_key, create_at, business_id), 查询性能反而降低了20倍左右
  • 只使用了 vm_cpu 分区: 大大提升了性能;

详细见下面:

MySQL [test]> explain partitions select  indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00'  group by business_id order by value asc;
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | vm_cpu | ref | indicator_busi_create_idx | indicator_busi_create_idx | 194 | const | 401193 | Using where; Using temporary; Using filesort |
+----+-------------+-----------------------------------------+------------+------+---------------------------+---------------------------+---------+-------+--------+----------------------------------------------+
1 row in set (0.00 sec) MySQL [test]> select indicator_key, avg(value) as value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' group by business_id order by value asc;
+-----------------------------------+--------------------+
| indicator_key | value |
+-----------------------------------+--------------------+
| bm_statistic_mem_avg_util_percent | 49.84557021505294 |
| bm_statistic_mem_avg_util_percent | 49.909942768434064 |
| bm_statistic_mem_avg_util_percent | 50.01579830123537 |
| bm_statistic_mem_avg_util_percent | 50.036187114557656 |
| bm_statistic_mem_avg_util_percent | 50.05631030105144 |
| bm_statistic_mem_avg_util_percent | 50.10827181235255 |
| bm_statistic_mem_avg_util_percent | 50.11606199668445 |
| bm_statistic_mem_avg_util_percent | 50.15219690174774 |
| bm_statistic_mem_avg_util_percent | 50.184881947759685 |
| bm_statistic_mem_avg_util_percent | 50.21056608597557 |
| bm_statistic_mem_avg_util_percent | 50.384555005273334 |
+-----------------------------------+--------------------+
11 rows in set (32.06 sec)

总结

indicator_busi_create_idx 和 indicator_create_busi_idx 对此查询的性能基本一样;

原因:

该查询只能使用到 indicator_key,无法使用到 businessId,都将导致大量的回表查询,大量的随机IO

实验结果:

当数据量很大时,BTREE索引如果需要进行回表查询(未能索引覆盖),产生大量随机IO,导致查询性能很差

  • 未使用索引,平均时间:1.26s;
  • 使用索引,平均时间:26s;
  • 添加索引后,性能下降了20倍左右;

原因推测

  • 使用索引后,B+Tree索引需要进行主键二次查询,即需要回表查询,虽然总查询条数变少了(80w减少到40w),但是会产生大量的随机IO,严重影响查询性能;(B+Tree索引在大数据量下性能很差
  • 不使用索引,直接进行全表顺序扫描,虽然总扫描条数较多(80w),但是不是随机IO磁盘读写,性能反而比索引的随机IO性能要好;

索引覆盖 vs 非索引覆盖

 KEY `indicator_busi_create_idx` (`indicator_key`,`business_id`,`create_at`)
// 特别注意:不是该索引 KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`)
// indicator_create_busi_idx中,create_at为范围查询,最左前缀原则,将会导致Business_id不可用;

性能对比

非覆盖索引

返回值中,包含value,该值不在索引中,无法使用索引覆盖;

平均下来,使用了 1.19 sec

//rows=7.8w, 可以和 indicator_create_busi_idx 索引对比(rows=40w左右): 可见,将create_at放在索引的最后,过滤的条数很明显
MySQL [test]> explain select indicator_key, business_id, value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+-------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | range | indicator_busi_create_idx | indicator_busi_create_idx | 308 | NULL | 78028 | Using where |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+-------------+
1 row in set (0.00 sec) MySQL [test]> select indicator_key, business_id, value from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d'; 37846 rows in set (1.19 sec)

rows=7.8w, 可以和 indicator_create_busi_idx 索引对比(rows=40w左右): 可见,将create_at放在索引的最后,过滤的条数很明显;

覆盖索引

返回值中,只包含 indicator_key, business_id, 可以使用索引覆盖;

平均下来,使用了 0.09 sec

MySQL [test]> explain select indicator_key, business_id from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | range | indicator_busi_create_idx | indicator_busi_create_idx | 308 | NULL | 78028 | Using where; Using index |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+ MySQL [test]> select indicator_key, business_id from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d'; 37846 rows in set (0.09 sec)

总结

  • 非覆盖索引:1.19s;
  • 覆盖索引:0.09s;

速度提升了十几倍;


多列索引,索引顺序影响

  • indicator_busi_create_idx: 平均:1.15s(8w数据量)
  • indicator_create_busi_idx:平均:26s左右(40w~80w数据量)
  • 无索引:平均: 0.8s(80w数据量)

indicator_busi_create_idx: 平均:1.15s

将范围查询的create_at放到索引列的最后;(8w数量)

KEY `indicator_busi_create_idx` (`indicator_key`,`business_id`,`create_at`)

MySQL [test]> explain select indicator_key, business_id , avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+
| 1 | SIMPLE | performance_metirc_host_part_min10_hour | range | indicator_busi_create_idx | indicator_busi_create_idx | 308 | NULL | 78028 | Using where; Using index |
+----+-------------+-----------------------------------------+-------+---------------------------+---------------------------+---------+------+-------+--------------------------+ MySQL [test]> select indicator_key, business_id, avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+-----------------------------------+----------------------------------+--------------------+
| indicator_key | business_id | avg(value) |
+-----------------------------------+----------------------------------+--------------------+
| bm_statistic_mem_avg_util_percent | 93d79263806742f190c6e6b9e7a1c08d | 50.036187114557656 |
+-----------------------------------+----------------------------------+--------------------+
1 row in set (1.15 sec)
indicator_create_busi_idx:平均:26s左右

将范围查询的create_at放到索引列的前面,导致BusinessId无法索引;(80w数据量)

和indicator_busi_create_idx相比,整整多了10倍的数据返回,这些都是随机IO

KEY `indicator_create_busi_idx` (`indicator_key`,`create_at`,`business_id`)

MySQL [test]> select indicator_key, business_id, avg(value) from performance_metirc_host_part_min10_hour where indicator_key='bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+-----------------------------------+----------------------------------+--------------------+
| indicator_key | business_id | avg(value) |
+-----------------------------------+----------------------------------+--------------------+
| bm_statistic_mem_avg_util_percent | 93d79263806742f190c6e6b9e7a1c08d | 50.036187114557656 |
+-----------------------------------+----------------------------------+--------------------+ 1 row in set (25.34 sec)

无索引:平均: 0.8s

将使用全表扫描(80w数据量)

MySQL [test]> select indicator_key, business_id, avg(value) from performance_metirc_host_part_min10_hour where indicator_key= 'bm_statistic_mem_avg_util_percent' and create_at >='2017-12-10 01:00:00' and create_at <='2017-12-10 01:50:00' and business_id = '93d79263806742f190c6e6b9e7a1c08d';
+-----------------------------------+----------------------------------+--------------------+
| indicator_key | business_id | avg(value) |
+-----------------------------------+----------------------------------+--------------------+
| bm_statistic_mem_avg_util_percent | 93d79263806742f190c6e6b9e7a1c08d | 50.036187114557514 |
+-----------------------------------+----------------------------------+--------------------+
1 row in set (0.8 sec)

附件

数据准备代码

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.UUID; public class WriteHostPartdata {
private static final List<String> poolIDList = new ArrayList<>();
private static final List<String> indicatorKeyList = new ArrayList<>();
private static final List<String> timeList = new ArrayList<>();
private static final List<String> busiIdList = new ArrayList<>();
private static final List<String> orgaIdList = new ArrayList<>(); static {
poolIDList.add("7b8f0f5e2fbb4d9aa2d5fd55466d638e");
poolIDList.add("7b8f0f5e2fbb4d9aa2d5fd55466d63df");
poolIDList.add("7b8f0f5e2fbb4d9aa2d5fd55466d63er");
poolIDList.add("7b8f0f5e2fbb4d9aa2d5fd55466d6398"); indicatorKeyList.add("bm_statistic_cpu_avg_util_percent");
indicatorKeyList.add("bm_statistic_disk_avg_util_percent");
indicatorKeyList.add("bm_statistic_mem_avg_util_percent");
indicatorKeyList.add("vm_statistic_cpu_avg_util_percent");
indicatorKeyList.add("vm_statistic_disk_avg_util_percent");
indicatorKeyList.add("vm_statistic_mem_avg_util_percent"); timeList.add("2017-12-10 01:00:00");
timeList.add("2017-12-10 01:10:00");
timeList.add("2017-12-10 01:20:00");
timeList.add("2017-12-10 01:30:00");
timeList.add("2017-12-10 01:40:00");
timeList.add("2017-12-10 01:50:00");
timeList.add("2017-12-10 02:00:00");
timeList.add("2017-12-10 02:10:00");
timeList.add("2017-12-10 02:20:00");
timeList.add("2017-12-10 02:30:00");
timeList.add("2017-12-10 02:40:00");
timeList.add("2017-12-10 02:50:00"); busiIdList.add("8fe3e7bcebf540d1ae47ef5b53f62524");
busiIdList.add("93d79263806742f190c6e6b9e7a1c08d");
busiIdList.add("6e1141b4328843f09176fcc6928fab74");
busiIdList.add("59562271f4e6483cb784cea5cdb8bc8f");
busiIdList.add("c29ef5146d2641a2b6d7b731866e73b0");
busiIdList.add("10a86c53d54e46c2bedab6899075f41e");
busiIdList.add("ef818a8080db48568dd9f34cec21999a");
busiIdList.add("1384eb7cde9a497891a7ed743a66cc70");
busiIdList.add("3085f77c8fc8451683864a578ec94fdf");
busiIdList.add("aa6183cb7704431f857e8e63c63a7b84");
busiIdList.add("dbf5233183fd40679768552b16d73491"); orgaIdList.add("1da69607a73349bb909e65294e44c3a5");
orgaIdList.add("e1b72aa209654aa9a21acd59e6c9b7d6");
orgaIdList.add("3feb63ee93a046adada742f18b278f6d");
orgaIdList.add("defe080c3802423aa3e84a59f269b7a0");
orgaIdList.add("b62eff24281a4935a853cca65c7608da");
orgaIdList.add("d3701686cc0b4f0da4eead39fa807bd7");
orgaIdList.add("f90b3f78a9d641ba8aa942d912d1adc7");
orgaIdList.add("43e03831ef8c4e52a8541ad465efcb67");
orgaIdList.add("65458cc498e8481e8bf915a6947916b3"); } public static void main(String[] args) {
String file = "D:\\tempTempTemp\\hostpartSql2.data";
writeFile(file);
} public static void writeFile(String fileName) {
try {
FileWriter fw = new FileWriter(new File(fileName));
for (int i = 1; i < 500_0001; i++) {
//id
fw.write("'");
fw.write(i);
fw.write("'");
fw.write(","); //poolId
fw.write("'");
fw.write(poolIDList.get(new Random().nextInt(poolIDList.size())));
fw.write("'");
fw.write(","); //hostId: uuid
fw.write("'");
fw.write(UUID.randomUUID().toString());
fw.write("'");
fw.write(","); //indicator_key
fw.write("'");
fw.write(indicatorKeyList.get(new Random().nextInt(indicatorKeyList.size())));
fw.write("'");
fw.write(","); //value
fw.write("'");
fw.write(String.valueOf(new Random().nextDouble() * 100));
fw.write("'");
fw.write(","); //resource_type
fw.write("'");
fw.write("");
fw.write("'");
fw.write(","); //create_at
fw.write("'");
fw.write(timeList.get(new Random().nextInt(timeList.size())));
fw.write("'");
fw.write(","); //business_id
fw.write("'");
fw.write(busiIdList.get(new Random().nextInt(busiIdList.size())));
fw.write("'");
fw.write(","); //organization_id
fw.write("'");
fw.write(orgaIdList.get(new Random().nextInt(orgaIdList.size())));
fw.write("'");
fw.write(","); //vpc_id
fw.write("'");
fw.write("");
fw.write("'");
fw.write(","); //security_id
fw.write("'");
fw.write("");
fw.write("'");
fw.write("\n");
if (i % 50000 == 0) {
System.out.println("Finish:" + i / 50000);
}
}
fw.close();
} catch (IOException e1) {
}
}
}

【mysql】mysql表分区、索引的性能测试的更多相关文章

  1. MySQL的表分区详解

    这篇文章主要介绍了MySQL的表分区,例如什么是表分区.为什么要对表进行分区.表分区的4种类型详解等,需要的朋友可以参考下 一.什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysq ...

  2. MySQL的表分区(转载)

    MySQL的表分区(转载) 一.什么是表分区 通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysql5.1开始支持数据表分区了. 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表 ...

  3. MySQL 横向表分区之RANGE分区小结

    MySQL 横向表分区之RANGE分区小结 by:授客 QQ:1033553122 目录 简介 1 RANGE分区 1 创建分区表 1 查看表分区 2 新增表分区 2 新增数据 3 分区表查询 3 删 ...

  4. MySQL InnoDB表和索引之聚簇索引与第二索引

    MySQL InnoDB表和索引之聚簇索引与第二索引 By:授客QQ:1033553122 每个InnoDB表都有一个称之为聚簇索引(clustered index)的特殊索引,存储记录行数据.通常, ...

  5. mysql数据库表分区详解(数量过大的数据库表通过分区提高查询速度)

    这篇文章主要介绍了MySQL的表分区,例如什么是表分区.为什么要对表进行分区.表分区的4种类型详解等,需要的朋友可以参考下 一.什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysq ...

  6. mysql创建表分区

    MySQL创建表分区 create table erp_bill_index( id int primary key auto_increment, addtime datetime ); inser ...

  7. mysql管理---表分区

    一.什么是表分区 通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysql5.1开始支持数据表分区了. 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分 ...

  8. MySQL数据库表分区功能详解

    1.什么是表分区? mysql数据库中的数据是以文件的形势存在磁盘上的,默认放在/mysql/data下面(可以通过my.cnf中的datadir来查看),一张表主要对应着三个文件,一个是frm存放表 ...

  9. MySQL的表分区

    什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysql5.1开始支持数据表分区了.如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分区.当然 ...

  10. mysql创建表与索引

    -- ---------------------------- -- 商品属性表 -- AUTO_INCREMENT=1为设置了自增长的字段设置起点,1为起点 -- ENGINE选择:MyISAM类型 ...

随机推荐

  1. JS中的变量与常量

    变量 1.创建变量 1.先声明,后赋值 使用var关键字进行变量的声明 使用=进行变量的赋值 自定义变量名 2.声明的同时赋值 var age = 20: 2.命名规范 1.由数字,字母,下划线和$组 ...

  2. [LeetCode&Python] Problem 543. Diameter of Binary Tree

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  3. this和super用法详解

    这几天看到类在继承时会用到this和super,这里就做了一点总结,与各位共同交流,有错误请各位指正~ this this是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针. this ...

  4. lamp 相关

    1.LAMP = linux + apache + mysql(mariadb/mongodb) + php 2.mysql 安装:先下载安装包: wget -c http://mirrors.soh ...

  5. Windows 10下使用WMware 12 安装Ubuntu16.04,安装过程(附全过程图)

    序言:菜鸡的我又开始瞎搞Ubuntu了 首先在网下下载VMware 12 正常安装即可 关于产品密匙问题:5A02H-AU243-TZJ49-GTC7K-3C61N (这是我在网上找的密匙,反正自己是 ...

  6. 安装Ubuntu16.04与windows10双系统后,如何修改启动默认设置

    在安装了Ubuntu16.04系统之后,系统会默认自启动Ubuntu16.04,而我们大多数情况下可能都在使用windows系统,不修改默认设置,不经意间便会启动了Ubuntu16.04,通过我的经历 ...

  7. php-isset和empty

    <?php $a = null; if(isset($a)){ echo "is set"."\n"; } else{ echo "not se ...

  8. tomcat部署项目(war文件)

    首先配置jdk环境 下载jdk 例如,我将jdk安装在d盘jdk目录下 配置系统环境 新建系统变量JAVA_HOME值为D:\jdk 新建系统变量CLASS_HOME值为 .%JAVA_HOME%\l ...

  9. Python——psutil的使用(获取系统性能信息)

    >>> import psutil #导入psutil >>> a=psutil.virtual_memory() >>> a.total #总虚 ...

  10. linux 变量定义

    本地变量:用户自定义的变量. 环境变量:用于所有用户变量,用于用户进程前,必须用export命令导出. 位置变量:$0(脚本名),$1-$9:脚本参数. 特定变量:脚本运行时的一些相关信息. $# 传 ...