bzoj5010: [Fjoi2017]矩阵填数
Description
Input
Output
#include<bits/stdc++.h>
typedef long long i64;
const int P=1e9+;
int T,h,w,m,n;
int xs[],ys[],xp,yp,vs[],vp,ts[];
int rc[][],mv[][],as[][];
void mins(int&a,int b){if(a>b)a=b;}
int pw(int a,int n){
int v=;
for(;n;n>>=,a=i64(a)*a%P)if(n&)v=i64(v)*a%P;
return v;
}
int main(){
for(scanf("%d",&T);T;--T){
int ans=;
scanf("%d%d%d%d",&h,&w,&m,&n);
xp=yp=vp=;
xs[xp++]=;
xs[xp++]=h+;
ys[yp++]=;
ys[yp++]=w+;
vs[vp++]=m;
for(int i=;i<n;++i){
for(int j=;j<;++j)scanf("%d",rc[i]+j);
xs[xp++]=rc[i][];
xs[xp++]=rc[i][]+;
ys[yp++]=rc[i][];
ys[yp++]=rc[i][]+;
vs[vp++]=rc[i][];
vs[vp++]=rc[i][]-;
}
std::sort(xs,xs+xp);
xp=std::unique(xs,xs+xp)-xs-;
std::sort(ys,ys+yp);
yp=std::unique(ys,ys+yp)-ys-;
std::sort(vs,vs+vp);
vp=std::unique(vs,vs+vp)-vs;
for(int i=;i<xp;++i)
for(int j=;j<yp;++j)as[i][j]=(xs[i+]-xs[i])*(ys[j+]-ys[j]);
for(int t=;t<n;++t){
rc[t][]=std::lower_bound(xs,xs+xp,rc[t][])-xs;
rc[t][]=std::lower_bound(xs,xs+xp,rc[t][]+)-xs;
rc[t][]=std::lower_bound(ys,ys+yp,rc[t][])-ys;
rc[t][]=std::lower_bound(ys,ys+yp,rc[t][]+)-ys;
rc[t][]=std::lower_bound(vs,vs+vp,rc[t][])-vs;
}
for(int S=;S<(<<n);++S){
for(int i=;i<xp;++i)
for(int j=;j<yp;++j)mv[i][j]=vp-;
int s=;
for(int t=;t<n;++t){
int v=rc[t][];
if(S>>t&)s=-s,--v;
for(int i=rc[t][];i<rc[t][];++i)
for(int j=rc[t][];j<rc[t][];++j)mins(mv[i][j],v);
}
for(int i=;i<vp;++i)ts[i]=;
for(int i=;i<xp;++i)
for(int j=;j<yp;++j)ts[mv[i][j]]+=as[i][j];
for(int i=;i<vp;++i)s=i64(s)*pw(vs[i],ts[i])%P;
ans=(ans+s)%P;
}
printf("%d\n",(ans+P)%P);
}
return ;
}
bzoj5010: [Fjoi2017]矩阵填数的更多相关文章
- [BZOJ5010][FJOI2017]矩阵填数(状压DP)
5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 90 Solved: 45[Submit][Status][ ...
- BZOJ5010 FJOI2017矩阵填数(容斥原理)
如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...
- [FJOI2017]矩阵填数——容斥
参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...
- P3813 [FJOI2017]矩阵填数(组合数学)
P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...
- bzoj 5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)
题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...
- P3813 [FJOI2017]矩阵填数
传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...
- 【BZOJ】5010: [Fjoi2017]矩阵填数
[算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...
- [FJOI2017]矩阵填数
[Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...
随机推荐
- 大整数四则运算------(c++ 实现 乘法没有用傅里叶变换)
/* 优点: 1 支持负整数的运算 2 良好的输出形式 没有前导零 3 支持cin直接输入 支持cout直接输出 4 支持整数的直接赋值 big_int x=100; 缺点: 1 封装不好 基本都是友 ...
- Windows共享设置
Windows文件共享默认是开启的,任何用户都可以方便的设置共享目录.那么如何关闭并禁止呢. ====打开或关闭网上邻居的网络发现:1. 右键单击,网上邻居,弹出菜单选择:属性,打开网络和共享中心界面 ...
- (19)jQuery操作文本和属性
<!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>jq ...
- 浅谈STM32L071硬件I2C挂死
STM32的IIC问题一直存在,在网上也被很多人吐槽,然而FAE告诉我,硬件IIC的问题在F1,F3,F4系列单片机存在,而在L0上已经解决了,然而这几天调试加密芯片和显示芯片,都是IIC芯片,却再一 ...
- 实现在同一界面打开putty终端连接工具
用过putty的人可能知道,每打开一次啊putty程序只能开启一个连接,这个在实际运用中很不方便,反正我开ssh一般都是同时开四个窗口 其实有一个程序可以实现打开多个putty,下面是下载地址 htt ...
- 深入详解美团点评CAT跨语言服务监控(七)消息分析器与报表(二)
CrossAnalyzer-调用链分析 在分布式环境中,应用是运行在独立的进程中的,有可能是不同的机器,或者不同的服务器进程.那么他们如果想要彼此联系在一起,形成一个调用链,在Cat中,CrossAn ...
- Lambda 表达式 是 个 好东东
Lambda 表达式 是 个 好东东 首先,通过 Lambda 表达式 + 动态语言特性 dynamic , C# 已经 可以 实现 函数式 编程 了 其次, 利用 Lambda, 可以 实现 AOP ...
- hdfs 例子
package hadoop; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; ...
- thinkphp本地调用Redis队列任务
1.安装配置好Redis 2.进入项目根目录文件夹输入cmd进入命令行 3.输入php think 查看php扩展 4.输入 php think queue:listen 启动队列监听
- 关于 unsigned int 比较大小
unsigned int 的所有数都是 >=0 的.比如 unsigned int 的 -2 也是 > 0 的,所以不能用自己常用的 upt( ) { if( x<0 ) x+=mo ...