题解:

莫比乌斯反演

再加上一个分块

然后和上一题差不多了

代码:

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=;
ll ans1,ans2;
int sum[N],a,b,x,y,z,tot,T,cnt,miu[N],flag[N],p[N];
void init()
{
miu[]=;
sum[]=;
for (int i=;i<N;i++)
{
if (!flag[i])
{
miu[i]=-;
p[++tot]=i;
}
for (int j=;j<=tot;j++)
{
int k=p[j]*i;
if (k>=N)break;
flag[k]=;
if (i%p[j]==)
{
miu[k]=;
break;
}
miu[k]-=miu[i];
}
}
for (int i=;i<N;i++)sum[i]=sum[i-]+miu[i];
}
ll find(int x,int y)
{
if (x>y)swap(x,y);
ll ans=;int j;
for (int i=;i<=x;i=j+)
{
j=min(x/(x/i),y/(y/i));
ans+=(ll)(sum[j]-sum[i-])*(x/i)*(y/i);
}
return ans;
}
int main()
{
scanf("%d",&T);
init();
while (T--)
{
ans1=ans2=;
scanf("%d%d%d%d%d",&a,&x,&b,&y,&z);
x/=z;y/=z;a=(a-)/z;b=(b-)/z;
ans1=find(x,y)-find(a,y)-find(x,b)+find(a,b);
printf("%lld\n",ans1);
}
}

bzoj2301的更多相关文章

  1. BZOJ2818 与 BZOJ2301【euler,线性筛,莫比乌斯】

    题目大意: 给一个范围[1,n],从中找出两个数x,y,使得gcd(x,y)为质数,问有多少对(x,y有序) 解法: 不难,欧拉函数练手题,可以定义集合P ={x|x为素数},那么我们枚举gcd(x, ...

  2. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  3. 【bzoj2301】 HAOI2011—Problem b

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i= ...

  4. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  5. 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...

  6. bzoj2301(莫比乌斯反演)

    bzoj2301 题意 求区间 [a, b] 和 区间 [c, d] 有多少对数 (x, y) 使得 gcd(x, y) = k . 分析 参考ppt 参考blog 考虑用容斥分成四次查询, 对于每次 ...

  7. 【BZOJ2301】Problem b(莫比乌斯反演)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d, 且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000 ...

  8. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  10. BZOJ2301 [HAOI2011]Problem b

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

随机推荐

  1. pip切换国内源(解决pipenv lock特别慢)

    切换方法参考https://blog.csdn.net/chenghuikai/article/details/55258957 实测,确实解决了pipenv这个问题,否则只能--skip-lock. ...

  2. Codeforces 960D - Full Binary Tree Queries

    960D - Full Binary Tree Queries 思路: 用move1[i]记录第i层第1种操作移动的个数(对这一层的个数取模) 用move2[i]记录第i层第2种操作移动的个数(对这一 ...

  3. 对Maven项目进行强制更新

    选中项目 然后 选中Force Update of Snapshots/Releases,点击OK即可. 此时pom.xml就不会报错了.

  4. Spring之Spel表达式

    正常业务场景一般不用这个技术,但需要知道有这么个东西支持Spring. 记忆力不好,抄了些套路代码便于以后用到. package com.paic.phssp.springtest.spel; imp ...

  5. 雷林鹏分享:XML 简介

    XML 简介 XML 被设计用来传输和存储数据. HTML 被设计用来显示数据. 应该掌握的基础知识 在您继续学习之前,需要对以下知识有基本的了解: HTML JavaScript 如果您希望首先学习 ...

  6. 使用getCurrentPosition方法实时获取当前Geolocation信息(附源码文件)--html5、JavaScript

    使用getCurrentPosition方法实时获取当前Geolocation信息: 1.getCurrentPosition方法的使用 navigator.geolocation.getCurren ...

  7. Confluence 6 删除一个空间

    删除一个空间将会完全删除空间和空间的所有内容,包括有关这个空间的所有日历,和链接到这个空间中的问题.只有具有空间管理员权限的用户才能够完全删除一个空间.  删除空间是完全从系统中删除的.一旦你删除了一 ...

  8. 【Java】【3】BeanUtils.copyProperties();将一个实体类的值复制到另外一个实体类

    正文: a,b为对象 BeanUtils.copyProperties(a,  b); 1,BeanUtils是org.springframework.beans.BeanUtils, a拷贝到b 2 ...

  9. leetcode-algorithms-34 Find First and Last Position of Element in Sorted Array

    leetcode-algorithms-34 Find First and Last Position of Element in Sorted Array Given an array of int ...

  10. virtualbox不能安装64位操作系统

    现在virtualbox 还是比较好用的虚拟机.新建立一个不同的操作系统还是非常方便. virtualbox下载地址  https://www.virtualbox.org/wiki/Download ...