opencv 傅里叶使用
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main(int a, char **p)
{
//Mat input = imread(p[1], CV_LOAD_IMAGE_GRAYSCALE);//以灰度图像的方式读入图片
//如果不知到怎么传入p[1]。可以改为
Mat input=imread("D:/adnidata/test/000.jpg",CV_LOAD_IMAGE_GRAYSCALE);
namedWindow("input",1);
imshow("input",input);//显示原图
int w = getOptimalDFTSize(input.cols);
int h = getOptimalDFTSize(input.rows);//获取最佳尺寸,快速傅立叶变换要求尺寸为2的n次方
Mat padded;
copyMakeBorder(input, padded, 0, h - input.rows, 0, w - input.cols, BORDER_CONSTANT, Scalar::all(0));//填充图像保存到padded中
Mat plane[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };//创建通道
Mat complexIm;
merge(plane, 2, complexIm);//合并通道
dft(complexIm, complexIm);//进行傅立叶变换,结果保存在自身
split(complexIm, plane);//分离通道
magnitude(plane[0], plane[1], plane[0]);//获取幅度图像,0通道为实数通道,1为虚数,因为二维傅立叶变换结果是复数
/*int cx = padded.cols / 2; int cy = padded.rows / 2;//一下的操作是移动图像,左上与右下交换位置,右上与左下交换位置
Mat temp;
Mat part1(plane[0], Rect(0, 0, cx, cy));
Mat part2(plane[0], Rect(cx, 0, cx, cy));
Mat part3(plane[0], Rect(0, cy, cx, cy));
Mat part4(plane[0], Rect(cx, cy, cx, cy));
part1.copyTo(temp);
part4.copyTo(part1);
temp.copyTo(part4);
part2.copyTo(temp);
part3.copyTo(part2);
temp.copyTo(part3);*/
//*******************************************************************
//Mat _complexim(complexIm,Rect(padded.cols/4,padded.rows/4,padded.cols/2,padded.rows/2));
//opyMakeBorder(_complexim,_complexim,padded.rows/4,padded.rows/4,padded.cols/4,padded.cols/4,BORDER_CONSTANT,Scalar::all(0.75));
Mat _complexim;
complexIm.copyTo(_complexim);//把变换结果复制一份,进行逆变换,也就是恢复原图
Mat iDft[] = { Mat::zeros(plane[0].size(), CV_32F), Mat::zeros(plane[0].size(), CV_32F) };//创建两个通道,类型为float,大小为填充后的尺寸
idft(_complexim, _complexim);//傅立叶逆变换
split(_complexim, iDft);//结果貌似也是复数
magnitude(iDft[0], iDft[1], iDft[0]);//分离通道,主要获取0通道
normalize(iDft[0], iDft[0], 1, 0, CV_MINMAX);//归一化处理,float类型的显示范围为0-1,大于1为白色,小于0为黑色
namedWindow("idft",1);
imshow("idft", iDft[0]);//显示逆变换
//*******************************************************************
plane[0] += Scalar::all(1);//傅立叶变换后的图片不好分析,进行对数处理,结果比较好看
log(plane[0], plane[0]);
normalize(plane[0], plane[0], 1, 0, CV_MINMAX);
imshow("dft", plane[0]);
waitKey(100086110);
return 0;
}
opencv 傅里叶使用的更多相关文章
- OpenCV图像处理学习笔记-Day4(完结)
OpenCV图像处理学习笔记-Day4(完结) 第41课:使用OpenCV统计直方图 第42课:绘制OpenCV统计直方图 pass 第43课:使用掩膜的直方图 第44课:掩膜原理及演示 第45课:直 ...
- OpenCV基于傅里叶变换进行文本的旋转校正
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里 ...
- 【转】opencv检测运动物体的基础_特征提取
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连 ...
- Opencv实现图像的灰度处理,二值化,阀值选择
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多 ...
- 第三节,使用OpenCV 3处理图像(模糊滤波、边缘检测)
一 不同色彩空间的转换 OpenCV中有数百种关于在不同色彩空间之间转换的方法.当前,在计算机中有三种常用的色彩空间:灰度,BGR以及HSV(Hue,Saturation,Value). 灰度色彩空间 ...
- Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)
我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...
- Python下opencv使用笔记(十)(图像频域滤波与傅里叶变换)
前面以前介绍过空间域滤波,空间域滤波就是用各种模板直接与图像进行卷积运算,实现对图像的处理,这个方案直接对图像空间操作,操作简单.所以也是空间域滤波. 频域滤波说究竟终于可能是和空间域滤波实现相同的功 ...
- OpenCV实现基于傅里叶变换的旋转文本校正
代码 先给出代码,再详细解释一下过程: #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp& ...
- OpenCV代码提取:dft函数的实现
The Fourier Transform will decompose an image into its sinus and cosines components. In other words, ...
随机推荐
- 制作tomcat重启.bat文件
环境是在windows下,linux不知道,没有尝试过,有机会去试试哈哈 首先创建一个restart.bat文件 创建在哪里看你开心咯 然后用记事本打开 输入以下源代码: @echo off cd / ...
- Codeforces 977F - Consecutive Subsequence - [map优化DP]
题目链接:http://codeforces.com/problemset/problem/977/F 题意: 给定一个长度为 $n$ 的整数序列 $a[1 \sim n]$,要求你找到一个它最长的一 ...
- Python:if __name__ == '__main__'
简介: __name__是当前模块名,当模块被直接运行时模块名为_main_,也就是当前的模块,当模块被导入时,模块名就不是__main__,即代码将不会执行. 关于代码if __name__ == ...
- spark Pair RDD 基础操作
下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...
- python fabric实现远程操作和部署示例
https://www.jb51.net/article/48434.htm 近期接手越来越多的东西,发布和运维的工作相当机械,加上频率还蛮高,导致时间浪费还是优点多.修复bug什么的,测试,提交版本 ...
- dhttp与IdCookieManager处理登陆过程
dhttp与IdCookieManager处理登陆过程 我们知道,用IE注册网页(象论坛)时,它能够自动找出相应的Cookie并提交给服务器,从而使用户不用重新登录就能够看到与他自己帐号有关的内容.这 ...
- delphi传递变量给fastreport
delphi传递变量给fastreport 1.打开frReport报表设计.2.打开file->data dictionary加变量.这里比如加title,bm,zbr,gj,zrs3.在 ...
- 图->连通性->有向图的强连通分量
文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly co ...
- 我的grunt学习笔记
什么是grunt? Grunt是一个JavaScript任务运行器,用于自动执行频繁任务(如压缩,编译,单元测试)的工具.它使用命令行界面来运行在文件中定义的自定义任务(这个文件称为Gruntfil ...
- java之String类在堆栈存储机制
String类是一个比较特殊的类,最主要的体现是它有多种创建形式,例如,String a ="abc";Sting a=new("abc");表面上看得到的结果 ...