Gym100340 线性dp
//看题解写的 https://blog.csdn.net/sdfzyhx/article/details/51804748
#include<bits/stdc++.h>
using namespace std;
#define ll long long struct node{
int id,g;
bool operator<(const node a)const{
return g>a.g;
}
}g[];
int n,m,b[][],pre[][];
ll sum[],dp[][]; int main(){
freopen("cookies.in","r",stdin);
freopen("cookies.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&g[i].g),g[i].id=i;
sort(g+,g++n);//降序排列
for(int i=;i<=n;i++)sum[i]=sum[i-]+g[i].g;
memset(dp,0x3f,sizeof dp);
dp[][]=;
for(int i=;i<=n;i++)
for(int j=i;j<=m;j++){
dp[i][j]=dp[i][j-i];
for(int k=;k<=i;k++){
if(dp[i][j]>dp[i-k][j-k]+(sum[i]-sum[i-k])*(i-k)){//是保留原状态更优还是k-i区间都发一块饼干的状态更优
dp[i][j]=dp[i-k][j-k]+(sum[i]-sum[i-k])*(i-k);
b[i][j]=;//这个状态是发了一块饼干的
pre[i][j]=i-k;//i-k+1 到 i都只发了一块饼干
}
}
}
printf("%lld\n",dp[n][m]);
int p=n,t=m,ans[]={};
while(p){
if(b[p][t]){//只发了一块饼干的状态
int x=pre[p][t];
for(int i=x+;i<=p;i++)
ans[g[i].id]++;
t-=p-x;p=x;
}
else {//第一种状态转移,1-p所有阶梯都下降1
for(int i=;i<=p;i++)ans[g[i].id]++;
t-=p;
}
}
for(int i=;i<=n;i++) printf("%d ",ans[i]);
}
Gym100340 线性dp的更多相关文章
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 『最长等差数列 线性DP』
最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...
随机推荐
- vue2.0 之文本渲染-v-html、v-text
vue2.0 之文本渲染-v-html.v-text 1.index.html代码 <!DOCTYPE html> <html> <head> <meta c ...
- 设计模式---对象创建模式之抽象工厂模式(Abstract Factory)
一:概念 抽象工厂模式是所有形态的工厂模式中最为抽象和最具一般性的.抽象工厂模式可以向客户端提供一个接口,使得客户端在不必指定产品的具体类型的情况下,能够创建多个产品族的产品对象 二:动机 在软件系统 ...
- layui(一)——layDate组件常见用法
和 layer 一样,我们可以在 layui 中使用 layDate,也可直接使用 layDate 独立版,可按照实际需求来选择.options整理如下: layui.use('laydate', f ...
- AES加密【转】
. 此时就一定要使用如下代码步骤 : 1.SecureRandom的key定下来. SecureRandom 实现完全隨操作系统本身的內部狀態,除非調用方在調用 getInstance 方法之後又 ...
- spring boot 2.0.3+spring cloud (Finchley)1、搭建服务注册和发现组件Eureka 以及构建高可用Eureka Server集群
一 .搭建Eureka 编写Eureka Server 由于有多个spring boot项目,采用maven多module的结构,项目结构如下: 新建一个maven主工程,在主maven的pom文件中 ...
- CodeForces - 896A Nephren gives a riddle
A. Nephren gives a riddle time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- HTML语义化
什么是HTML语义化呢? 根据内容的结构化(内容语义化),选择合适的标签(代码语义化),便于开发者阅读,写出优雅的代码的同时让浏览器的爬虫更好的解析 语义化标签的优势: 1)代码结构清晰,方便阅读 2 ...
- Python学习笔记9-多线程和多进程
一.线程&进程 对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程, ...
- 【搬运】C指针 一
本文搬运自https://fishc.com.cn/forum.php?mod=viewthread&tid=71654&extra=page%3D1%26filter%3Dtypei ...
- 9 Web开发——springmvc自动配置原理
官方文档目录: https://docs.spring.io/spring-boot/docs/2.1.0.RELEASE/reference/htmlsingle/#boot-features-sp ...