题目描述

给定一个有\(n\)个元素的序列,元素编号为\([1,n]\),每个元素有\(k\)个属性\(p_1,p_2,p_3,...,p_k\) ,求序列中满足 \(i<j\)且 \(1 \leq t \leq k\),\(p_{t,i}<p_{t,j}\) 的数对\((i,j)\)的个数。

输入格式

第一行两个整数 \(n\),\(k\),表示序列长度和属性个数。

接下来\(k\) 行,每行 \(n\)个整数,第\(t\) 行第 \(i\)个数表示\(p_{t,i}\) 。

输出格式

共1行,表示满足要求的数对个数。

样例

样例输入

5 4
1 4 5 2 3
3 5 2 1 4
2 3 4 1 5
2 3 1 5 4

样例输出

2

数据范围与提示

对于\(30\%\)的数据\(n \leq 5000\),\(k \leq 6\)

对于\(100\%\)的数据\(1 \leq n \leq 40000\),\(k \leq 6\)。保证对于所有元素的\(p_t\)属性组成一个\(1 - n\)的排列。

分析

这道题算上坐标的话,维数达到了\(7\)维

如果用一些数据结构去维护的话,很可能会超时

其实我们用 \(bitset\) 就可以搞定这道题

对于每一维,我们用 \(bitset\) 去存储小于\(i\)的数所在的位置

最后对于每一个位置\(i\),我们将这几个维度作位与运算

最后统计下标小于\(i\)的位置中\(1\)的个数

这样去处理时间复杂度为\(O(n \times k)\),空间复杂度为\(O(n^2 \times k)\)

而\(40000 \times 40000 \times 6\) 的\(bitset\)我们显然是开不下的

因此我们考虑用时间换空间

我们可以用分块的思想将时间复杂度和空间复杂度都均衡至\(O(nlogn\times k)\)

代码

#include <cstdio>
#include <bitset>
#include <cmath>
#include <iostream>
const int maxn = 4e4 + 5;
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
return x * f;
}
int n, m, a[8][maxn], rk[8][maxn], blo;
std::bitset<maxn> b[8][305], now, js, ws;
int main() {
n = read(), m = read();
blo = sqrt(n);
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] = read();
rk[i][a[i][j]] = j;
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j * blo <= n; j++) {
b[i][j] = b[i][j - 1];
for (int k = (j - 1) * blo + 1; k <= j * blo; k++) {
b[i][j].set(rk[i][k]);
}
}
}
int ans = 0;
ws.reset();
for (int i = 1; i <= n; i++) {
now.set();
ws.set(i);
now &= ws;
for (int j = 1; j <= m; j++) {
int shuyu = a[j][i] / blo;
js.reset();
js |= b[j][shuyu];
for (int k = shuyu * blo + 1; k <= a[j][i]; k++) {
js.set(rk[j][k]);
}
now &= js;
}
ans += now.count() - 1;
}
printf("%d\n", ans);
return 0;
}

偏序 分块+bitset的更多相关文章

  1. 2015北京网络赛 J Clarke and puzzle 求五维偏序 分块+bitset

    Clarke and puzzle Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/contest/acmicpc20 ...

  2. hihocoder1236(北京网络赛J):scores 分块+bitset

    北京网络赛的题- -.当时没思路,听大神们说是分块+bitset,想了一下发现确实可做,就试了一下,T了好多次终于过了 题意: 初始有n个人,每个人有五种能力值,现在有q个查询,每次查询给五个数代表查 ...

  3. 种树 by yoyoball [树分块+bitset]

    题面 给定一棵树,有点权 每次询问给出一些点对,求这些点对之间的路径的并集上不同权值的个数,以及这些权值的$mex$ 思路 先考虑只有一对点对,只询问不同权值个数的问题:树上莫队模板题 然后加个$me ...

  4. HihoCoder - 1236 Scores (五维偏序,分块+bitset)

    题目链接 题意:给定n个五维空间上的点,以及m组询问,每组询问给出一个点,求五个维度都不大于它的点有多少个,强制在线. 神仙题 单独考虑每个维度,把所有点按这个维度上的大小排序,然后分成T块,每块用一 ...

  5. hihocoder 1236(2015北京网络赛 J题) 分块bitset乱搞题

    题目大意: 每个人有五门课成绩,初始给定一部分学生的成绩,然后每次询问给出一个学生的成绩,希望知道在给定的一堆学生的成绩比这个学生每门都低或者相等的人数 因为强行要求在线查询,所以题目要求,每次当前给 ...

  6. Codeforces 917F Substrings in a String - 后缀自动机 - 分块 - bitset - KMP

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个字母串,要求支持以下操作: 修改一个位置的字母 查询一段区间中,字符串$s$作为子串出现的次数 Solution 1 Bitset 每 ...

  7. CF1093E Intersection of Permutations [分块 +bitset]

    大家好, 我非常喜欢暴力数据结构, 于是就用分块A了此题 分块题,考虑前缀和 \(b_i\) 表示 bitset 即 \(0\) ~ $i $ 出现过的数字,然后考虑直接暴力复制块然后前缀和,修改也很 ...

  8. Bzoj 2120: 数颜色 && 2453: 维护队列 莫队,分块,bitset

    2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit: 2645  Solved: 1039[Submit][Status][Discuss] ...

  9. Bzoj 2453: 维护队列 && Bzoj 2120: 数颜色 分块,bitset

    2453: 维护队列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 247[Submit][Status][Discuss] ...

随机推荐

  1. layui常用插件(一) 轮播图

    轮播图 <html lang="en"> <head> <meta charset="UTF-8"> <meta ht ...

  2. 解释Crypto模块,No module named "Crypto"

    1.pip install pycryptodome 2.Python\Python38\Lib\site-packages,找到这个路径,下面有一个文件夹叫做crypto,将小写c改成大写C就ok了 ...

  3. 高阶NumPy知识图谱-《利用Python进行数据分析》

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章 ...

  4. SQL Server 枚举异或运算后值存入数据库,读取符合条件的值

    有枚举如下: [Flags] public enum Color { Red = , Green = , Blue = , White = } 定义三个枚举变量,并将值存入数据库: Color col ...

  5. ERROR 1054 (42S22): Unknown column 'password' in 'field list'

    解决: update MySQL.user set authentication_string=password('123456') where user='root'; FLUSH PRIVILEG ...

  6. LVS-DR:搭建HTTP和HTTPS负载均衡集群

    目录 LVS-DR实战:搭建HTTP和HTTPS负载均衡集群 1. 搭建lvs-dr模式的http负载集群 1.1 LVS上配置IP 1.2 RS上配置arp内核参数 1.3 RS上配置VIP 1.4 ...

  7. vue cli4构建基于typescript的vue组件并发布到npm

    基于vue cli创建一个vue项目 首先安装最新的vue cli脚手架, npm install --global @vue/cli npm WARN optional SKIPPING OPTIO ...

  8. SQLServer 把ID相同的多行数据合并到一起

    我们现在有以下GameArea表,以及与其关联的Proveince表: 我们现在需要把GameArea表中GameId相同的数据合并到一行显示,可以使用以下写法: SELECT GameID,STUF ...

  9. Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is platform dependen

    Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is platform dependen ...

  10. 2017面向对象程序设计(Java)第五周工作总结

    时光如逝,岁月如梭,不知不觉已经开学五个星期了.在代老师的带领下,我们一步一步走近Java,也渐渐的适应了翻转课堂的个性化教学,此时此刻相信同学们对Java也有了更加深入的了解.下面我对第五周的助教工 ...