发现自己发的一篇面经后,很多小伙伴向我索要epoll的内核源码实现,那我就在牛客网发下这源码还有自己总结的流程.

另外 网上很多博客说epoll使用了共享内存,这个是完全错误的 ,可以阅读源码,会发现完全没有使用共享内存的任何api,
而是 使用了copy_from_user跟__put_user进行内核跟用户虚拟空间数据交互.

 
  1  *  fs/eventpoll.c (Efficient event retrieval implementation)
2 * Copyright (C) 2001,...,2009 Davide Libenzi
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * Davide Libenzi <davidel@xmailserver.org>
10 *
11 */
12 /*
13 * 在深入了解epoll的实现之前, 先来了解内核的3个方面.
14 * 1. 等待队列 waitqueue
15 * 我们简单解释一下等待队列:
16 * 队列头(wait_queue_head_t)往往是资源生产者,
17 * 队列成员(wait_queue_t)往往是资源消费者,
18 * 当头的资源ready后, 会逐个执行每个成员指定的回调函数,
19 * 来通知它们资源已经ready了, 等待队列大致就这个意思.
20 * 2. 内核的poll机制
21 * 被Poll的fd, 必须在实现上支持内核的Poll技术,
22 * 比如fd是某个字符设备,或者是个socket, 它必须实现
23 * file_operations中的poll操作, 给自己分配有一个等待队列头.
24 * 主动poll fd的某个进程必须分配一个等待队列成员, 添加到
25 * fd的对待队列里面去, 并指定资源ready时的回调函数.
26 * 用socket做例子, 它必须有实现一个poll操作, 这个Poll是
27 * 发起轮询的代码必须主动调用的, 该函数中必须调用poll_wait(),
28 * poll_wait会将发起者作为等待队列成员加入到socket的等待队列中去.
29 * 这样socket发生状态变化时可以通过队列头逐个通知所有关心它的进程.
30 * 这一点必须很清楚的理解, 否则会想不明白epoll是如何
31 * 得知fd的状态发生变化的.
32 * 3. epollfd本身也是个fd, 所以它本身也可以被epoll,
33 * 可以猜测一下它是不是可以无限嵌套epoll下去...
34 *
35 * epoll基本上就是使用了上面的1,2点来完成.
36 * 可见epoll本身并没有给内核引入什么特别复杂或者高深的技术,
37 * 只不过是已有功能的重新组合, 达到了超过select的效果.
38 */
39 /*
40 * 相关的其它内核知识:
41 * 1. fd我们知道是文件描述符, 在内核态, 与之对应的是struct file结构,
42 * 可以看作是内核态的文件描述符.
43 * 2. spinlock, 自旋锁, 必须要非常小心使用的锁,
44 * 尤其是调用spin_lock_irqsave()的时候, 中断关闭, 不会发生进程调度,
45 * 被保护的资源其它CPU也无法访问. 这个锁是很强力的, 所以只能锁一些
46 * 非常轻量级的操作.
47 * 3. 引用计数在内核中是非常重要的概念,
48 * 内核代码里面经常有些release, free释放资源的函数几乎不加任何锁,
49 * 这是因为这些函数往往是在对象的引用计数变成0时被调用,
50 * 既然没有进程在使用在这些对象, 自然也不需要加锁.
51 * struct file 是持有引用计数的.
52 */
53 /* --- epoll相关的数据结构 --- */
54 /*
55 * This structure is stored inside the "private_data" member of the file
56 * structure and rapresent the main data sructure for the eventpoll
57 * interface.
58 */
59 /* 每创建一个epollfd, 内核就会分配一个eventpoll与之对应, 可以说是
60 * 内核态的epollfd. */
61 struct eventpoll {
62 /* Protect the this structure access */
63 spinlock_t lock;
64 /*
65 * This mutex is used to ensure that files are not removed
66 * while epoll is using them. This is held during the event
67 * collection loop, the file cleanup path, the epoll file exit
68 * code and the ctl operations.
69 */
70 /* 添加, 修改或者删除监听fd的时候, 以及epoll_wait返回, 向用户空间
71 * 传递数据时都会持有这个互斥锁, 所以在用户空间可以放心的在多个线程
72 * 中同时执行epoll相关的操作, 内核级已经做了保护. */
73 struct mutex mtx;
74 /* Wait queue used by sys_epoll_wait() */
75 /* 调用epoll_wait()时, 我们就是"睡"在了这个等待队列上... */
76 wait_queue_head_t wq;
77 /* Wait queue used by file->poll() */
78 /* 这个用于epollfd本事被poll的时候... */
79 wait_queue_head_t poll_wait;
80 /* List of ready file descriptors */
81 /* 所有已经ready的epitem都在这个链表里面 */
82 struct list_head rdllist;
83 /* RB tree root used to store monitored fd structs */
84 /* 所有要监听的epitem都在这里 */
85 struct rb_root rbr;
86 /*
87 这是一个单链表链接着所有的struct epitem当event转移到用户空间时
88 */
89 * This is a single linked list that chains all the "struct epitem" that
90 * happened while transfering ready events to userspace w/out
91 * holding ->lock.
92 */
93 struct epitem *ovflist;
94 /* The user that created the eventpoll descriptor */
95 /* 这里保存了一些用户变量, 比如fd监听数量的最大值等等 */
96 struct user_struct *user;
97 };
98 /*
99 * Each file descriptor added to the eventpoll interface will
100 * have an entry of this type linked to the "rbr" RB tree.
101 */
102 /* epitem 表示一个被监听的fd */
103 struct epitem {
104 /* RB tree node used to link this structure to the eventpoll RB tree */
105 /* rb_node, 当使用epoll_ctl()将一批fds加入到某个epollfd时, 内核会分配
106 * 一批的epitem与fds们对应, 而且它们以rb_tree的形式组织起来, tree的root
107 * 保存在epollfd, 也就是struct eventpoll中.
108 * 在这里使用rb_tree的原因我认为是提高查找,插入以及删除的速度.
109 * rb_tree对以上3个操作都具有O(lgN)的时间复杂度 */
110 struct rb_node rbn;
111 /* List header used to link this structure to the eventpoll ready list */
112 /* 链表节点, 所有已经ready的epitem都会被链到eventpoll的rdllist中 */
113 struct list_head rdllink;
114 /*
115 * Works together "struct eventpoll"->ovflist in keeping the
116 * single linked chain of items.
117 */
118 /* 这个在代码中再解释... */
119 struct epitem *next;
120 /* The file descriptor information this item refers to */
121 /* epitem对应的fd和struct file */
122 struct epoll_filefd ffd;
123 /* Number of active wait queue attached to poll operations */
124 int nwait;
125 /* List containing poll wait queues */
126 struct list_head pwqlist;
127 /* The "container" of this item */
128 /* 当前epitem属于哪个eventpoll */
129 struct eventpoll *ep;
130 /* List header used to link this item to the "struct file" items list */
131 struct list_head fllink;
132 /* The structure that describe the interested events and the source fd */
133 /* 当前的epitem关系哪些events, 这个数据是调用epoll_ctl时从用户态传递过来 */
134 struct epoll_event event;
135 };
136 struct epoll_filefd {
137 struct file *file;
138 int fd;
139 };
140 /* poll所用到的钩子Wait structure used by the poll hooks */
141 struct eppoll_entry {
142 /* List header used to link this structure to the "struct epitem" */
143 struct list_head llink;
144 /* The "base" pointer is set to the container "struct epitem" */
145 struct epitem *base;
146 /*
147 * Wait queue item that will be linked to the target file wait
148 * queue head.
149 */
150 wait_queue_t wait;
151 /* The wait queue head that linked the "wait" wait queue item */
152 wait_queue_head_t *whead;
153 };
154 /* Wrapper struct used by poll queueing */
155 struct ep_pqueue {
156 poll_table pt;
157 struct epitem *epi;
158 };
159 /* Used by the ep_send_events() function as callback private data */
160 struct ep_send_events_data {
161 int maxevents;
162 struct epoll_event __user *events;
163 };
164
165 /* --- 代码注释 --- */
166 /* 你没看错, 这就是epoll_create()的真身, 基本啥也不干直接调用epoll_create1了,
167 * 另外你也可以发现, size这个参数其实是没有任何用处的... */
168 SYSCALL_DEFINE1(epoll_create, int, size)
169 {
170 if (size <= 0)
171 return -EINVAL;
172 return sys_epoll_create1(0);
173 }
174 /* 这才是真正的epoll_create啊~~ */
175 SYSCALL_DEFINE1(epoll_create1, int, flags)
176 {
177 int error;
178 struct eventpoll *ep = NULL;//主描述符
179 /* Check the EPOLL_* constant for consistency. */
180 /* 这句没啥用处... */
181 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
182 /* 对于epoll来讲, 目前唯一有效的FLAG就是CLOEXEC */
183 if (flags & ~EPOLL_CLOEXEC)
184 return -EINVAL;
185 /*
186 * Create the internal data structure ("struct eventpoll").
187 */
188 /* 分配一个struct eventpoll, 分配和初始化细节我们随后深聊~ */
189 error = ep_alloc(&ep);
190 if (error < 0)
191 return error;
192 /*
193 * Creates all the items needed to setup an eventpoll file. That is,
194 * a file structure and a free file descriptor.
195 */
196 /* 这里是创建一个匿名fd, 说起来就话长了...长话短说:
197 * epollfd本身并不存在一个真正的文件与之对应, 所以内核需要创建一个
198 * "虚拟"的文件, 并为之分配真正的struct file结构, 而且有真正的fd.
199 * 这里2个参数比较关键:
200 * eventpoll_fops, fops就是file operations, 就是当你对这个文件(这里是虚拟的)进行操作(比如读)时,
201 * fops里面的函数指针指向真正的操作实现, 类似C++里面虚函数和子类的概念.
202 * epoll只实现了poll和release(就是close)操作, 其它文件系统操作都有VFS全权处理了.
203 * ep, ep就是struct epollevent, 它会作为一个私有数据保存在struct file的private指针里面.
204 * 其实说白了, 就是为了能通过fd找到struct file, 通过struct file能找到eventpoll结构.
205 * 如果懂一点Linux下字符设备驱动开发, 这里应该是很好理解的,
206 * 推荐阅读 <Linux device driver 3rd>
207 */
208 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
209 O_RDWR | (flags & O_CLOEXEC));
210 if (error < 0)
211 ep_free(ep);
212 return error;
213 }
214 /*
215 * 创建好epollfd后, 接下来我们要往里面添加fd咯
216 * 来看epoll_ctl
217 * epfd 就是epollfd
218 * op ADD,MOD,DEL
219 * fd 需要监听的描述符
220 * event 我们关心的events
221 */
222 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
223 struct epoll_event __user *, event)
224 {
225 int error;
226 struct file *file, *tfile;
227 struct eventpoll *ep;
228 struct epitem *epi;
229 struct epoll_event epds;
230 error = -EFAULT;
231 /*
232 * 错误处理以及从用户空间将epoll_event结构copy到内核空间.
233 */
234 if (ep_op_has_event(op) &&
235 copy_from_user(&epds, event, sizeof(struct epoll_event)))
236 goto error_return;
237 /* Get the "struct file *" for the eventpoll file */
238 /* 取得struct file结构, epfd既然是真正的fd, 那么内核空间
239 * 就会有与之对于的一个struct file结构
240 * 这个结构在epoll_create1()中, 由函数anon_inode_getfd()分配 */
241 error = -EBADF;
242 file = fget(epfd);
243 if (!file)
244 goto error_return;
245 /* Get the "struct file *" for the target file */
246 /* 我们需要监听的fd, 它当然也有个struct file结构, 上下2个不要搞混了哦 */
247 tfile = fget(fd);
248 if (!tfile)
249 goto error_fput;
250 /* The target file descriptor must support poll */
251 error = -EPERM;
252 /* 如果监听的文件不支持poll, 那就没辙了.
253 * 你知道什么情况下, 文件会不支持poll吗?
254 */
255 if (!tfile->f_op || !tfile->f_op->poll)
256 goto error_tgt_fput;
257 /*
258 * We have to check that the file structure underneath the file descriptor
259 * the user passed to us _is_ an eventpoll file. And also we do not permit
260 * adding an epoll file descriptor inside itself.
261 */
262 error = -EINVAL;
263 /* epoll不能自己监听自己... */
264 if (file == tfile || !is_file_epoll(file))
265 goto error_tgt_fput;
266 /*
267 * At this point it is safe to assume that the "private_data" contains
268 * our own data structure.
269 */
270 /* 取到我们的eventpoll结构, 来自与epoll_create1()中的分配 */
271 ep = file->private_data;
272 /* 接下来的操作有可能修改数据结构内容, 锁之~ */
273 mutex_lock(&ep->mtx);
274 /*
275 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
276 * above, we can be sure to be able to use the item looked up by
277 * ep_find() till we release the mutex.
278 */
279 /* 对于每一个监听的fd, 内核都有分配一个epitem结构,
280 * 而且我们也知道, epoll是不允许重复添加fd的,
281 * 所以我们首先查找该fd是不是已经存在了.
282 * ep_find()其实就是RBTREE查找, 跟C++STL的map差不多一回事, O(lgn)的时间复杂度.
283 */
284 epi = ep_find(ep, tfile, fd);
285 error = -EINVAL;
286 switch (op) {
287 /* 首先我们关心添加 */
288 case EPOLL_CTL_ADD:
289 if (!epi) {
290 /* 之前的find没有找到有效的epitem, 证明是第一次插入, 接受!
291 * 这里我们可以知道, POLLERR和POLLHUP事件内核总是会关心的
292 * */
293 epds.events |= POLLERR | POLLHUP;
294 /* rbtree插入, 详情见ep_insert()的分析
295 * 其实我觉得这里有insert的话, 之前的find应该
296 * 是可以省掉的... */
297 error = ep_insert(ep, &epds, tfile, fd);
298 } else
299 /* 找到了!? 重复添加! */
300 error = -EEXIST;
301 break;
302 /* 删除和修改操作都比较简单 */
303 case EPOLL_CTL_DEL:
304 if (epi)
305 error = ep_remove(ep, epi);
306 else
307 error = -ENOENT;
308 break;
309 case EPOLL_CTL_MOD:
310 if (epi) {
311 epds.events |= POLLERR | POLLHUP;
312 error = ep_modify(ep, epi, &epds);
313 } else
314 error = -ENOENT;
315 break;
316 }
317 mutex_unlock(&ep->mtx);
318 error_tgt_fput:
319 fput(tfile);
320 error_fput:
321 fput(file);
322 error_return:
323 return error;
324 }
325 /* 分配一个eventpoll结构 */
326 static int ep_alloc(struct eventpoll **pep)
327 {
328 int error;
329 struct user_struct *user;
330 struct eventpoll *ep;
331 /* 获取当前用户的一些信息, 比如是不是root啦, 最大监听fd数目啦 */
332 user = get_current_user();
333 error = -ENOMEM;
334 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
335 if (unlikely(!ep))
336 goto free_uid;
337 /* 这些都是初始化啦 */
338 spin_lock_init(&ep->lock);
339 mutex_init(&ep->mtx);
340 init_waitqueue_head(&ep->wq);//初始化自己睡在的等待队列
341 init_waitqueue_head(&ep->poll_wait);//初始化
342 INIT_LIST_HEAD(&ep->rdllist);//初始化就绪链表
343 ep->rbr = RB_ROOT;
344 ep->ovflist = EP_UNACTIVE_PTR;
345 ep->user = user;
346 *pep = ep;
347 return 0;
348 free_uid:
349 free_uid(user);
350 return error;
351 }
352 /*
353 * Must be called with "mtx" held.
354 */
355 /*
356 * ep_insert()在epoll_ctl()中被调用, 完成往epollfd里面添加一个监听fd的工作
357 * tfile是fd在内核态的struct file结构
358 */
359 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
360 struct file *tfile, int fd)
361 {
362 int error, revents, pwake = 0;
363 unsigned long flags;
364 struct epitem *epi;
365 struct ep_pqueue epq;
366 /* 查看是否达到当前用户的最大监听数 */
367 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
368 max_user_watches))
369 return -ENOSPC;
370 /* 从著名的slab中分配一个epitem */
371 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
372 return -ENOMEM;
373 /* Item initialization follow here ... */
374 /* 这些都是相关成员的初始化... */
375 INIT_LIST_HEAD(&epi->rdllink);
376 INIT_LIST_HEAD(&epi->fllink);
377 INIT_LIST_HEAD(&epi->pwqlist);
378 epi->ep = ep;
379 /* 这里保存了我们需要监听的文件fd和它的file结构 */
380 ep_set_ffd(&epi->ffd, tfile, fd);
381 epi->event = *event;
382 epi->nwait = 0;
383 /* 这个指针的初值不是NULL哦... */
384 epi->next = EP_UNACTIVE_PTR;
385 /* Initialize the poll table using the queue callback */
386 /* 好, 我们终于要进入到poll的正题了 */
387 epq.epi = epi;
388 /* 初始化一个poll_table
389 * 其实就是指定调用poll_wait(注意不是epoll_wait!!!)时的回调函数,和我们关心哪些events,
390 * ep_ptable_queue_proc()就是我们的回调啦, 初值是所有event都关心 */
391 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
392 /*
393 * Attach the item to the poll hooks and get current event bits.
394 * We can safely use the file* here because its usage count has
395 * been increased by the caller of this function. Note that after
396 * this operation completes, the poll callback can start hitting
397 * the new item.
398 */
399 /* 这一部很关键, 也比较难懂, 完全是内核的poll机制导致的...
400 * 首先, f_op->poll()一般来说只是个wrapper, 它会调用真正的poll实现,
401 * 拿UDP的socket来举例, 这里就是这样的调用流程: f_op->poll(), sock_poll(),
402 * udp_poll(), datagram_poll(), sock_poll_wait(), 最后调用到我们上面指定的
403 * ep_ptable_queue_proc()这个回调函数...(好深的调用路径...).
404 * 完成这一步, 我们的epitem就跟这个socket关联起来了, 当它有状态变化时,
405 * 会通过ep_poll_callback()来通知.
406 * 最后, 这个函数还会查询当前的fd是不是已经有啥event已经ready了, 有的话
407 * 会将event返回. */
408 revents = tfile->f_op->poll(tfile, &epq.pt);
409 /*
410 * We have to check if something went wrong during the poll wait queue
411 * install process. Namely an allocation for a wait queue failed due
412 * high memory pressure.
413 */
414 error = -ENOMEM;
415 if (epi->nwait < 0)
416 goto error_unregister;
417 /* Add the current item to the list of active epoll hook for this file */
418 /* 这个就是每个文件会将所有监听自己的epitem链起来 */
419 spin_lock(&tfile->f_lock);
420 list_add_tail(&epi->fllink, &tfile->f_ep_links);
421 spin_unlock(&tfile->f_lock);
422 /*
423 * Add the current item to the RB tree. All RB tree operations are
424 * protected by "mtx", and ep_insert() is called with "mtx" held.
425 */
426 /* 都搞定后, 将epitem插入到对应的eventpoll中去 */
427 ep_rbtree_insert(ep, epi);
428 /* We have to drop the new item inside our item list to keep track of it */
429 spin_lock_irqsave(&ep->lock, flags);
430 /* If the file is already "ready" we drop it inside the ready list */
431 /* 到达这里后, 如果我们监听的fd已经有事件发生, 那就要处理一下 */
432 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
433 /* 将当前的epitem加入到ready list中去 */
434 list_add_tail(&epi->rdllink, &ep->rdllist);
435 /* Notify waiting tasks that events are available */
436 /* 谁在epoll_wait, 就唤醒它... */
437 if (waitqueue_active(&ep->wq))
438 wake_up_locked(&ep->wq);
439 /* 谁在epoll当前的epollfd, 也唤醒它... */
440 if (waitqueue_active(&ep->poll_wait))
441 pwake++;
442 }
443 spin_unlock_irqrestore(&ep->lock, flags);
444 atomic_inc(&ep->user->epoll_watches);
445 /* We have to call this outside the lock */
446 if (pwake)
447 ep_poll_safewake(&ep->poll_wait);
448 return 0;
449 error_unregister:
450 ep_unregister_pollwait(ep, epi);
451 /*
452 * We need to do this because an event could have been arrived on some
453 * allocated wait queue. Note that we don't care about the ep->ovflist
454 * list, since that is used/cleaned only inside a section bound by "mtx".
455 * And ep_insert() is called with "mtx" held.
456 */
457 spin_lock_irqsave(&ep->lock, flags);
458 if (ep_is_linked(&epi->rdllink))
459 list_del_init(&epi->rdllink);
460 spin_unlock_irqrestore(&ep->lock, flags);
461 kmem_cache_free(epi_cache, epi);
462 return error;
463 }
464 /*
465 * This is the callback that is used to add our wait queue to the
466 * target file wakeup lists.
467 */
468 /*
469 * 该函数在调用f_op->poll()时会被调用.
470 * 也就是epoll主动poll某个fd时, 用来将epitem与指定的fd关联起来的.
471 * 关联的办法就是使用等待队列(waitqueue)
472 */
473 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
474 poll_table *pt)
475 {
476 struct epitem *epi = ep_item_from_epqueue(pt);
477 struct eppoll_entry *pwq;
478 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
479 /* 初始化等待队列, 指定ep_poll_callback为唤醒时的回调函数,
480 * 当我们监听的fd发生状态改变时, 也就是队列头被唤醒时,
481 * 指定的回调函数将会被调用. */
482 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
483 pwq->whead = whead;
484 pwq->base = epi;
485 /* 将刚分配的等待队列成员加入到头中, 头是由fd持有的 */
486 add_wait_queue(whead, &pwq->wait);
487 list_add_tail(&pwq->llink, &epi->pwqlist);
488 /* nwait记录了当前epitem加入到了多少个等待队列中,
489 * 我认为这个值最大也只会是1... */
490 epi->nwait++;
491 } else {
492 /* We have to signal that an error occurred */
493 epi->nwait = -1;
494 }
495 }
496 /*
497 * This is the callback that is passed to the wait queue wakeup
498 * machanism. It is called by the stored file descriptors when they
499 * have events to report.
500 */
501 /*
502 * 这个是关键性的回调函数, 当我们监听的fd发生状态改变时, 它会被调用.
503 * 参数key被当作一个unsigned long整数使用, 携带的是events.
504 */
505 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
506 {
507 int pwake = 0;
508 unsigned long flags;
509 struct epitem *epi = ep_item_from_wait(wait);//从等待队列获取epitem.需要知道哪个进程挂载到这个设备
510 struct eventpoll *ep = epi->ep;//获取
511 spin_lock_irqsave(&ep->lock, flags);
512 /*
513 * If the event mask does not contain any poll(2) event, we consider the
514 * descriptor to be disabled. This condition is likely the effect of the
515 * EPOLLONESHOT bit that disables the descriptor when an event is received,
516 * until the next EPOLL_CTL_MOD will be issued.
517 */
518 if (!(epi->event.events & ~EP_PRIVATE_BITS))
519 goto out_unlock;
520 /*
521 * Check the events coming with the callback. At this stage, not
522 * every device reports the events in the "key" parameter of the
523 * callback. We need to be able to handle both cases here, hence the
524 * test for "key" != NULL before the event match test.
525 */
526 /* 没有我们关心的event... */
527 if (key && !((unsigned long) key & epi->event.events))
528 goto out_unlock;
529 /*
530 * If we are trasfering events to userspace, we can hold no locks
531 * (because we're accessing user memory, and because of linux f_op->poll()
532 * semantics). All the events that happens during that period of time are
533 * chained in ep->ovflist and requeued later on.
534 */
535 /*
536 * 这里看起来可能有点费解, 其实干的事情比较简单:
537 * 如果该callback被调用的同时, epoll_wait()已经返回了,
538 * 也就是说, 此刻应用程序有可能已经在循环获取events,
539 * 这种情况下, 内核将此刻发生event的epitem用一个单独的链表
540 * 链起来, 不发给应用程序, 也不丢弃, 而是在下一次epoll_wait
541 * 时返回给用户.
542 */
543 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
544 if (epi->next == EP_UNACTIVE_PTR) {
545 epi->next = ep->ovflist;
546 ep->ovflist = epi;
547 }
548 goto out_unlock;
549 }
550 /* If this file is already in the ready list we exit soon */
551 /* 将当前的epitem放入ready list */
552 if (!ep_is_linked(&epi->rdllink))
553 list_add_tail(&epi->rdllink, &ep->rdllist);
554 /*
555 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
556 * wait list.
557 */
558 /* 唤醒epoll_wait... */
559 if (waitqueue_active(&ep->wq))
560 wake_up_locked(&ep->wq);
561 /* 如果epollfd也在被poll, 那就唤醒队列里面的所有成员. */
562 if (waitqueue_active(&ep->poll_wait))
563 pwake++;
564 out_unlock:
565 spin_unlock_irqrestore(&ep->lock, flags);
566 /* We have to call this outside the lock */
567 if (pwake)
568 ep_poll_safewake(&ep->poll_wait);
569 return 1;
570 }
571 /*
572 * Implement the event wait interface for the eventpoll file. It is the kernel
573 * part of the user space epoll_wait(2).
574 */
575 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
576 int, maxevents, int, timeout)
577 {
578 int error;
579 struct file *file;
580 struct eventpoll *ep;
581 /* The maximum number of event must be greater than zero */
582 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
583 return -EINVAL;
584 /* Verify that the area passed by the user is writeable */
585 /* 这个地方有必要说明一下:
586 * 内核对应用程序采取的策略是"绝对不信任",
587 * 所以内核跟应用程序之间的数据交互大都是copy, 不允许(也时候也是不能...)指针引用.
588 * epoll_wait()需要内核返回数据给用户空间, 内存由用户程序提供,
589 * 所以内核会用一些手段来验证这一段内存空间是不是有效的.
590 */
591 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
592 error = -EFAULT;
593 goto error_return;
594 }
595 /* Get the "struct file *" for the eventpoll file */
596 error = -EBADF;
597 /* 获取epollfd的struct file, epollfd也是文件嘛 */
598 file = fget(epfd);
599 if (!file)
600 goto error_return;
601 /*
602 * We have to check that the file structure underneath the fd
603 * the user passed to us _is_ an eventpoll file.
604 */
605 error = -EINVAL;
606 /* 检查一下它是不是一个真正的epollfd... */
607 if (!is_file_epoll(file))
608 goto error_fput;
609 /*
610 * At this point it is safe to assume that the "private_data" contains
611 * our own data structure.
612 */
613 /* 获取eventpoll结构 */
614 ep = file->private_data;
615 /* Time to fish for events ... */
616 /* OK, 睡觉, 等待事件到来~~ */
617 error = ep_poll(ep, events, maxevents, timeout);
618 error_fput:
619 fput(file);
620 error_return:
621 return error;
622 }
623 /* 这个函数真正将执行epoll_wait的进程带入睡眠状态... */
624 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
625 int maxevents, long timeout)
626 {
627 int res, eavail;
628 unsigned long flags;
629 long jtimeout;
630 wait_queue_t wait;//等待队列
631 /*
632 * Calculate the timeout by checking for the "infinite" value (-1)
633 * and the overflow condition. The passed timeout is in milliseconds,
634 * that why (t * HZ) / 1000.
635 */
636 /* 计算睡觉时间, 毫秒要转换为HZ */
637 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
638 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
639 retry:
640 spin_lock_irqsave(&ep->lock, flags);
641 res = 0;
642 /* 如果ready list不为空, 就不睡了, 直接干活... */
643 if (list_empty(&ep->rdllist)) {
644 /*
645 * We don't have any available event to return to the caller.
646 * We need to sleep here, and we will be wake up by
647 * ep_poll_callback() when events will become available.
648 */
649 /* OK, 初始化一个等待队列, 准备直接把自己挂起,
650 * 注意current是一个宏, 代表当前进程 */
651 init_waitqueue_entry(&wait, current);//初始化等待队列,wait表示当前进程
652 __add_wait_queue_exclusive(&ep->wq, &wait);//挂载到ep结构的等待队列
653 for (;;) {
654 /*
655 * We don't want to sleep if the ep_poll_callback() sends us
656 * a wakeup in between. That's why we set the task state
657 * to TASK_INTERRUPTIBLE before doing the checks.
658 */
659 /* 将当前进程设置位睡眠, 但是可以被信号唤醒的状态,
660 * 注意这个设置是"将来时", 我们此刻还没睡! */
661 set_current_state(TASK_INTERRUPTIBLE);
662 /* 如果这个时候, ready list里面有成员了,
663 * 或者睡眠时间已经过了, 就直接不睡了... */
664 if (!list_empty(&ep->rdllist) || !jtimeout)
665 break;
666 /* 如果有信号产生, 也起床... */
667 if (signal_pending(current)) {
668 res = -EINTR;
669 break;
670 }
671 /* 啥事都没有,解锁, 睡觉... */
672 spin_unlock_irqrestore(&ep->lock, flags);
673 /* jtimeout这个时间后, 会被唤醒,
674 * ep_poll_callback()如果此时被调用,
675 * 那么我们就会直接被唤醒, 不用等时间了...
676 * 再次强调一下ep_poll_callback()的调用时机是由被监听的fd
677 * 的具体实现, 比如socket或者某个设备驱动来决定的,
678 * 因为等待队列头是他们持有的, epoll和当前进程
679 * 只是单纯的等待...
680 **/
681 jtimeout = schedule_timeout(jtimeout);//睡觉
682 spin_lock_irqsave(&ep->lock, flags);
683 }
684 __remove_wait_queue(&ep->wq, &wait);
685 /* OK 我们醒来了... */
686 set_current_state(TASK_RUNNING);
687 }
688 /* Is it worth to try to dig for events ? */
689 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
690 spin_unlock_irqrestore(&ep->lock, flags);
691 /*
692 * Try to transfer events to user space. In case we get 0 events and
693 * there's still timeout left over, we go trying again in search of
694 * more luck.
695 */
696 /* 如果一切正常, 有event发生, 就开始准备数据copy给用户空间了... */
697 if (!res && eavail &&
698 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
699 goto retry;
700 return res;
701 }
702 /* 这个简单, 我们直奔下一个... */
703 static int ep_send_events(struct eventpoll *ep,
704 struct epoll_event __user *events, int maxevents)
705 {
706 struct ep_send_events_data esed;
707 esed.maxevents = maxevents;
708 esed.events = events;
709 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
710 }
711 /**
712 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
713 * the scan code, to call f_op->poll(). Also allows for
714 * O(NumReady) performance.
715 *
716 * @ep: Pointer to the epoll private data structure.
717 * @sproc: Pointer to the scan callback.
718 * @priv: Private opaque data passed to the @sproc callback.
719 *
720 * Returns: The same integer error code returned by the @sproc callback.
721 */
722 static int ep_scan_ready_list(struct eventpoll *ep,
723 int (*sproc)(struct eventpoll *,
724 struct list_head *, void *),
725 void *priv)
726 {
727 int error, pwake = 0;
728 unsigned long flags;
729 struct epitem *epi, *nepi;
730 LIST_HEAD(txlist);
731 /*
732 * We need to lock this because we could be hit by
733 * eventpoll_release_file() and epoll_ctl().
734 */
735 mutex_lock(&ep->mtx);
736 /*
737 * Steal the ready list, and re-init the original one to the
738 * empty list. Also, set ep->ovflist to NULL so that events
739 * happening while looping w/out locks, are not lost. We cannot
740 * have the poll callback to queue directly on ep->rdllist,
741 * because we want the "sproc" callback to be able to do it
742 * in a lockless way.
743 */
744 spin_lock_irqsave(&ep->lock, flags);
745 /* 这一步要注意, 首先, 所有监听到events的epitem都链到rdllist上了,
746 * 但是这一步之后, 所有的epitem都转移到了txlist上, 而rdllist被清空了,
747 * 要注意哦, rdllist已经被清空了! */
748 list_splice_init(&ep->rdllist, &txlist);
749 /* ovflist, 在ep_poll_callback()里面我解释过, 此时此刻我们不希望
750 * 有新的event加入到ready list中了, 保存后下次再处理... */
751 ep->ovflist = NULL;
752 spin_unlock_irqrestore(&ep->lock, flags);
753 /*
754 * Now call the callback function.
755 */
756 /* 在这个回调函数里面处理每个epitem
757 * sproc 就是 ep_send_events_proc, 下面会注释到. */
758 error = (*sproc)(ep, &txlist, priv);
759 spin_lock_irqsave(&ep->lock, flags);
760 /*
761 * During the time we spent inside the "sproc" callback, some
762 * other events might have been queued by the poll callback.
763 * We re-insert them inside the main ready-list here.
764 */
765 /* 现在我们来处理ovflist, 这些epitem都是我们在传递数据给用户空间时
766 * 监听到了事件. */
767 for (nepi = ep->ovflist; (epi = nepi) != NULL;
768 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
769 /*
770 * We need to check if the item is already in the list.
771 * During the "sproc" callback execution time, items are
772 * queued into ->ovflist but the "txlist" might already
773 * contain them, and the list_splice() below takes care of them.
774 */
775 /* 将这些直接放入readylist */
776 if (!ep_is_linked(&epi->rdllink))
777 list_add_tail(&epi->rdllink, &ep->rdllist);
778 }
779 /*
780 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
781 * releasing the lock, events will be queued in the normal way inside
782 * ep->rdllist.
783 */
784 ep->ovflist = EP_UNACTIVE_PTR;
785 /*
786 * Quickly re-inject items left on "txlist".
787 */
788 /* 上一次没有处理完的epitem, 重新插入到ready list */
789 list_splice(&txlist, &ep->rdllist);
790 /* ready list不为空, 直接唤醒... */
791 if (!list_empty(&ep->rdllist)) {
792 /*
793 * Wake up (if active) both the eventpoll wait list and
794 * the ->poll() wait list (delayed after we release the lock).
795 */
796 if (waitqueue_active(&ep->wq))
797 wake_up_locked(&ep->wq);
798 if (waitqueue_active(&ep->poll_wait))
799 pwake++;
800 }
801 spin_unlock_irqrestore(&ep->lock, flags);
802 mutex_unlock(&ep->mtx);
803 /* We have to call this outside the lock */
804 if (pwake)
805 ep_poll_safewake(&ep->poll_wait);
806 return error;
807 }
808 /* 该函数作为callbakc在ep_scan_ready_list()中被调用
809 * head是一个链表, 包含了已经ready的epitem,
810 * 这个不是eventpoll里面的ready list, 而是上面函数中的txlist.
811 */
812 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
813 void *priv)
814 {
815 struct ep_send_events_data *esed = priv;
816 int eventcnt;
817 unsigned int revents;
818 struct epitem *epi;
819 struct epoll_event __user *uevent;
820 /*
821 * We can loop without lock because we are passed a task private list.
822 * Items cannot vanish during the loop because ep_scan_ready_list() is
823 * holding "mtx" during this call.
824 */
825 /* 扫描整个链表... */
826 for (eventcnt = 0, uevent = esed->events;
827 !list_empty(head) && eventcnt < esed->maxevents;) {
828 /* 取出第一个成员 */
829 epi = list_first_entry(head, struct epitem, rdllink);
830 /* 然后从链表里面移除 */
831 list_del_init(&epi->rdllink);
832 /* 读取events,
833 * 注意events我们ep_poll_callback()里面已经取过一次了, 为啥还要再取?
834 * 1. 我们当然希望能拿到此刻的最新数据, events是会变的~
835 * 2. 不是所有的poll实现, 都通过等待队列传递了events, 有可能某些驱动压根没传
836 * 必须主动去读取. */
837 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
838 epi->event.events;
839 if (revents) {
840 /* 将当前的事件和用户传入的数据都copy给用户空间,
841 * 就是epoll_wait()后应用程序能读到的那一堆数据. */
842 if (__put_user(revents, &uevent->events) ||
843 __put_user(epi->event.data, &uevent->data)) {
844 list_add(&epi->rdllink, head);
845 return eventcnt ? eventcnt : -EFAULT;
846 }
847 eventcnt++;
848 uevent++;
849 if (epi->event.events & EPOLLONESHOT)
850 epi->event.events &= EP_PRIVATE_BITS;
851 else if (!(epi->event.events & EPOLLET)) {
852 /* 嘿嘿, EPOLLET和非ET的区别就在这一步之差呀~
853 * 如果是ET, epitem是不会再进入到readly list,
854 * 除非fd再次发生了状态改变, ep_poll_callback被调用.
855 * 如果是非ET, 不管你还有没有有效的事件或者数据,
856 * 都会被重新插入到ready list, 再下一次epoll_wait
857 * 时, 会立即返回, 并通知给用户空间. 当然如果这个
858 * 被监听的fds确实没事件也没数据了, epoll_wait会返回一个0,
859 * 空转一次.
860 */
861 list_add_tail(&epi->rdllink, &ep->rdllist);
862 }
863 }
864 }
865 return eventcnt;
866 }
867 /* ep_free在epollfd被close时调用,
868 * 释放一些资源而已, 比较简单 */
869 static void ep_free(struct eventpoll *ep)
870 {
871 struct rb_node *rbp;
872 struct epitem *epi;
873 /* We need to release all tasks waiting for these file */
874 if (waitqueue_active(&ep->poll_wait))
875 ep_poll_safewake(&ep->poll_wait);
876 /*
877 * We need to lock this because we could be hit by
878 * eventpoll_release_file() while we're freeing the "struct eventpoll".
879 * We do not need to hold "ep->mtx" here because the epoll file
880 * is on the way to be removed and no one has references to it
881 * anymore. The only hit might come from eventpoll_release_file() but
882 * holding "epmutex" is sufficent here.
883 */
884 mutex_lock(&epmutex);
885 /*
886 * Walks through the whole tree by unregistering poll callbacks.
887 */
888 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
889 epi = rb_entry(rbp, struct epitem, rbn);
890 ep_unregister_pollwait(ep, epi);
891 }
892 /*
893 * Walks through the whole tree by freeing each "struct epitem". At this
894 * point we are sure no poll callbacks will be lingering around, and also by
895 * holding "epmutex" we can be sure that no file cleanup code will hit
896 * us during this operation. So we can avoid the lock on "ep->lock".
897 */
898 /* 之所以在关闭epollfd之前不需要调用epoll_ctl移除已经添加的fd,
899 * 是因为这里已经做了... */
900 while ((rbp = rb_first(&ep->rbr)) != NULL) {
901 epi = rb_entry(rbp, struct epitem, rbn);
902 ep_remove(ep, epi);
903 }
904 mutex_unlock(&epmutex);
905 mutex_destroy(&ep->mtx);
906 free_uid(ep->user);
907 kfree(ep);
908 }
909 /* File callbacks that implement the eventpoll file behaviour */
910 static const struct file_operations eventpoll_fops = {
911 .release = ep_eventpoll_release,
912 .poll = ep_eventpoll_poll
913 };
914 /* Fast test to see if the file is an evenpoll file */
915 static inline int is_file_epoll(struct file *f)
916 {
917 return f->f_op == &eventpoll_fops;
918 }
919 /* OK, eventpoll我认为比较重要的函数都注释完了... */
epoll_create
从slab缓存中创建一个eventpoll对象,并且创建一个匿名的fd跟fd对应的file对象,
而eventpoll对象保存在struct file结构的private指针中,并且返回,
该fd对应的file operations只是实现了poll跟release操作

创建eventpoll对象的初始化操作
获取当前用户信息,是不是root,最大监听fd数目等并且保存到eventpoll对象中
初始化等待队列,初始化就绪链表,初始化红黑树的头结点

epoll_ctl操作
将epoll_event结构拷贝到内核空间中
并且判断加入的fd是否支持poll结构(epoll,poll,selectI/O多路复用必须支持poll操作).
并且从epfd->file->privatedata获取event_poll对象,根据op区分是添加删除还是修改,
首先在eventpoll结构中的红黑树查找是否已经存在了相对应的fd,没找到就支持插入操作,否则报重复的错误.
相对应的修改,删除比较简单就不啰嗦了

插入操作时,会创建一个与fd对应的epitem结构,并且初始化相关成员,比如保存监听的fd跟file结构之类的
重要的是指定了调用poll_wait时的回调函数用于数据就绪时唤醒进程,(其内部,初始化设备的等待队列,将该进程注册到等待队列)完成这一步,
我们的epitem就跟这个socket关联起来了, 当它有状态变化时,
会通过ep_poll_callback()来通知.
最后调用加入的fd的file operation->poll函数(最后会调用poll_wait操作)用于完成注册操作.
最后将epitem结构添加到红黑树中

epoll_wait操作
计算睡眠时间(如果有),判断eventpoll对象的链表是否为空,不为空那就干活不睡明.并且初始化一个等待队列,把自己挂上去,设置自己的进程状态
为可睡眠状态.判断是否有信号到来(有的话直接被中断醒来,),如果啥事都没有那就调用schedule_timeout进行睡眠,如果超时或者被唤醒,首先从自己初始化的等待队列删除
,然后开始拷贝资源给用户空间了
拷贝资源则是先把就绪事件链表转移到中间链表,然后挨个遍历拷贝到用户空间,
并且挨个判断其是否为水平触发,是的话再次插入到就绪链表

epoll内核源码详解(转 作者:赛罗·奥特曼 来源:牛客网)的更多相关文章

  1. [转]Linux内核源码详解--iostat

    Linux内核源码详解——命令篇之iostat 转自:http://www.cnblogs.com/york-hust/p/4846497.html 本文主要分析了Linux的iostat命令的源码, ...

  2. 【Nginx】epoll及内核源码详解

    内核源码: https://www.nowcoder.com/discuss/26226?type=0&order=0&pos=21&page=1 epoll流程: 首先调用e ...

  3. Linux内核源码详解——命令篇之iostat[zz]

    本文主要分析了Linux的iostat命令的源码,iostat的主要功能见博客:性能测试进阶指南——基础篇之磁盘IO iostat源码共563行,应该算是Linux系统命令代码比较少的了.源代码中主要 ...

  4. RocketMQ源码详解 | Broker篇 · 其一:线程模型与接收链路

    概述 在上一节 RocketMQ源码详解 | Producer篇 · 其二:消息组成.发送链路 中,我们终于将消息发送出了 Producer,在短暂的 tcp 握手后,很快它就会进入目的 Broker ...

  5. Activiti架构分析及源码详解

    目录 Activiti架构分析及源码详解 引言 一.Activiti设计解析-架构&领域模型 1.1 架构 1.2 领域模型 二.Activiti设计解析-PVM执行树 2.1 核心理念 2. ...

  6. RocketMQ源码详解 | Broker篇 · 其五:高可用之主从架构

    概述 对于一个消息中间件来讲,高可用功能是极其重要的,RocketMQ 当然也具有其对应的高可用方案. 在 RocketMQ 中,有主从架构和 Dledger 两种高可用方案: 第一种通过主 Brok ...

  7. Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解

    Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是Jo ...

  8. spring事务详解(三)源码详解

    系列目录 spring事务详解(一)初探事务 spring事务详解(二)简单样例 spring事务详解(三)源码详解 spring事务详解(四)测试验证 spring事务详解(五)总结提高 一.引子 ...

  9. 条件随机场之CRF++源码详解-预测

    这篇文章主要讲解CRF++实现预测的过程,预测的算法以及代码实现相对来说比较简单,所以这篇文章理解起来也会比上一篇条件随机场训练的内容要容易. 预测 上一篇条件随机场训练的源码详解中,有一个地方并没有 ...

随机推荐

  1. 发布MeteoInfo 1.2.8

    增加了对SYNOP数据的支持(功能从C#版移植过来).数据可以从这里下载:http://weather.cod.edu/digatmos/syn/SYNOP数据搞气象的人应该多少知道些,类似MICAP ...

  2. MeteoInfoLab脚本示例:MODIS AOD

    MODIS的气溶胶光学厚度(AOD)产品应用很广,数据可以在Giovanni上下载:http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html ...

  3. 发布MeteoInfo 1.2.5

    提升了MeteoInfoLab脚本数据处理能力,比如双Y轴图.多Y轴图.数组计算.坐标投影计算等.这里给出几个示例图,以后有空了会将示例脚本程序整理放在网上.坐标投影计算: 双Y轴图: 多Y轴图: 多 ...

  4. day14 Pyhton学习

    一.迭代器-概念 可迭代协议:内部含有__iter__方法的值/变量都是可迭代的 如何得到一个迭代器:可迭代变量.__iter__()返回一个迭代器 迭代器协议:内部含有__iter__方法和__ne ...

  5. pytest文档58-随机执行测试用例(pytest-random-order)

    前言 通常我们认为每个测试用例都是相互独立的,因此需要保证测试结果不依赖于测试顺序,以不同的顺序运行测试用例,可以得到相同的结果. pytest默认运行用例的顺序是按模块和用例命名的 ASCII 编码 ...

  6. RDS 事务型数据库sql

    -- 替换json中数据 select SUBSTRING_INDEX(SUBSTRING_INDEX('[{"channelCode":"MOBIL",&qu ...

  7. AT一万亿港元市值之差,腾讯和阿里到底“差”在哪里?

    很少有人注意到,港股之王已经悄然易主. 2019年底,阿里巴巴赴港二次上市,中国两大互联网巨头终于有了统一的比较口径,同台竞技之下,我们发现一个惊人事实--截止9月5日,港股阿里巴巴市值5.9万亿港元 ...

  8. seajs模块化jQuery与jQuery插件【转】

    把jQuery修改成SeaJs的模块代码非常简单,就是用下面这段语句将jQuery源代码包裹起来: define('jquery',[],function(require, exports, modu ...

  9. 单元测试之道Java版——读书笔记

    单元测试知道Java版读书笔记 首先我们必须要知道我们所写的代码,它的功能是什么,如果我们不了解代码的行为,那么也就无从测试. 我们测试的目的,是为了我们整个程序架构的稳定,代码其实就是欧文要实现功能 ...

  10. Bitmap 创建、转换、圆角、设置透明度

    指定一个色值生成bitmap  public Bitmap getBackGroundBitmap(int color) { Paint p = new Paint(); p.setColor(Col ...