这篇论文提出了SIF sentence embedding方法, 作者提供的代码在Github.

引入

作为一种无监督计算句子之间相似度的方法, sif sentence embedding使用预训练好的词向量, 使用加权平均的方法, 对句子中所有词对应的词向量进行计算, 得到整个句子的embedding向量. 再使用句子向量进行相似度的计算.

在这篇论文之前, 也有与这篇文章思路非常相近的思路, 即都是使用词向量, 通过平均的方法得到句子向量, 只是在加权时权重计算方法上有区别. 具体来说有:

  • 对句子中所有单词直接求平均, 每个单词的权重相同, 得到sentence embedding
  • 使用每个词的TF-IDF值为权重, 加权平均, 得到sentence embedding

这篇论文使用smooth inverse frequency, sif作为每个单词的权重, 代替TF-IDF值, 获得了更好的效果. 除了使用新的词权重计算方法, 还在加权平均后, 减掉了principal component, 最终得到句子的embedding.

另外论文中还提到了这种方法的鲁棒性:

  • 使用不同语料(多种领域)训练得到的不同的word embedding, 均取得了很好的效果, 说明了对各种语料的友好.
  • 使用不同语料得到的词频, 作为计算词权重的因素, 对最终的结果影响很小.
  • 对于方法中的超参数, 在很大范围内, 获得的结果都是区域一直的, 即超参数的选择没有太大的影响.

理论

1. 生成模型

首先从潜变量生成模型(latent variable generative model)说起. 这个模型假设: 语料的生成是一个动态过程(dynamic process), 即第\(t\)个单词是在第\(t\)步生成的.

每个单词\(w\)对应着一个\(\mathbb{R}^d\)维的向量. 而这个动态过程是由discourse vector\(c_t\in{\mathbb{R}^d}\)的随机游走驱动的. discourse vector代表着这个句子what is being talked about, 作为潜变量, 代表着句子一个状态, 由于是动态的, 这个状态是随时间变化的, 因此记为\(c_t\).

单词\(w\)的向量\(v_w\)与当前时间的discourse vector\(c_t\)的内积, 表示着这个单词与整个句子之间的关系. 并且我们假设\(t\)时刻观测到单词\(w\)的概率为这个内积的对数线性(log linear)关系:

\[Pr(\text{w emitted at time t}| c_t)\propto{\exp(\langle c_t,v_w \rangle)}
\]

由于\(c_t\)是较小幅度的随机游走得到的, \(c_t\)与\(c_{t+1}\)之间只会差一个较小的随机差向量, 因此相邻的单词是由近似的discourse vector生成得到的. 另外计算表明这种模型的随机游走允许偶尔\(c_t\)有较大的jump, 这对共生概率的影响是很小的.

通过这种办法生成的单词向量, 与word2vec(CBOW)Glove生成的向量是相似的.

2. 随机游走模型的改进

借助上面的模型, 我们希望如下获得一个句子的我sentence embedding: 对discourse vector最大似然估计. 为了简化, 注意到\(c_t\)在整个句子生成单词的过程中, 变化很小, 因此我们将所有步的discourse vector假设为一个固定的向量\(c_s\). 可证明: 对\(c_s\)的最大似然估计就是对所有单词embedding向量的平均.

这篇论文对这种模型进行了改进, 加入了两项平滑项, 出于如下的考虑:

  • 有些单词在规定的上下文范围之外出现, 也可能对discourse vector产生影响
  • 有限单词的出现(如常见的停止词)与discourse vector没有关系

出于这两点考虑, 引入了两种平滑项, 首先是对数线性模型中的一个累加项(additive term)\(\alpha p(w)\),其中\(p(w)\)是单词\(w\)在整个语料中出现的概率(词频角度), \(\alpha\)是一个超参数. 这样, 即使和\(c_s\)的内积很小, 这个单词也有概率出现.

然后, 引入一个纠正项, common discourse vector\(c_0\in{\mathbb{R}^d}\), 其意义是句子的最频繁的意义, 可以认为是句子中最重要的成分, 常常可以与语法联系起来. 文章中认为对于某个单词, 其沿着\(c_0\)方向的成分较大(即向量投影更长), 这个纠正项就会提升这个单词出现的概率.

校正后, 对于给定的discourse vector\(c_s\), 单词\(w\)在句子\(s\)中出现的概率为:

\[Pr(\text{w emitted in sentence s}| c_s)\propto{\alpha p(w) + (1-\alpha)\frac{\exp(\langle \tilde{c}_s, v_w \rangle)}{Z_{\tilde{c}_s}}}
\]

其中, \(\tilde{c}_s=\beta c_0+(1-\beta)c_s,\ c_0\perp c_s\), \(\alpha\)和\(\beta\)都是超参数, \(Z_{\tilde{c}_s}=\sum\limits_{w\in{V}}\exp(\langle \tilde{c}_s, v_w \rangle)\)是归一化常数. 从公式中可以看出, 一个与\(c_s\)没有关系的单词\(w\), 也可以在句子中出现, 原因有:

  • 来自\(\alpha p(w)\)项的数值
  • common discourse vector \(c_0\)的相关性

3. 计算句子向量

句子向量就是上述模型中的\(c_s\), 使用最大似然法估计\(c_s\)向量. 首先假设所有单词的向量\(v_s\)是大致均匀分布在整个向量空间上的, 因此这里的归一化项\(Z_c\)对于不同的句子值都是大致相同的, 即对于任意的\(\tilde{c}_s\), \(Z\)值是相同的. 在此前提下, 得到似然函数:

\[p[s|c_s]=\prod\limits_{w\in{s}}p(w|c_s)=\prod\limits_{w\in{s}}[\alpha p(w) + (1-\alpha)\frac{\exp(\langle \tilde{c}_s, v_w \rangle)}{Z}]
\]

取对数, 单个单词记为

\[f_w(\tilde{c}_s)=\log[\alpha p(w) + (1-\alpha)\frac{\exp(\langle \tilde{c}_s, v_w \rangle)}{Z}]
\]

最大化上式, 具体的推到在论文中有详述的说明, 最终目标为:

\[\arg\max\limits_{c_s}\sum\limits_{w\in{s}}f_w(\tilde{c}_s)
\]

可以得到:

\[\tilde{c}_s\propto \sum\limits_{w\in{s}}\frac{a}{p(w)+a}v_w,\ a=\frac{1-\alpha}{\alpha Z}
\]

因此可以得到:

  • 最优解为句子中所有单词向量的加权平均
  • 对于词频更高的单词\(w\), 权值更小, 因此这种方法也等同于下采样频繁单词

最后, 为了得到最终的句子向量\(c_s\), 我们需要估计\(c_0\). 通过计算向量\(\tilde{c}_s\)的first principal component(PCA中的主成分), 将其作为\(c_0\). 最终的句子向量即为\(\tilde{c}_s\)减去主成份向量\(c_0\).

4. 算法总结

整个算法步骤总结如下图:

论文阅读 A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SEN- TENCE EMBEDDINGS的更多相关文章

  1. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  2. [论文阅读] LCC-NLM(局部颜色校正, 非线性mask)

    [论文阅读] LCC-NLM(局部颜色校正, 非线性mask) 文章: Local color correction using non-linear masking 1. 算法原理 如下图所示为, ...

  3. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  4. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

  5. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  6. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  7. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

  8. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  9. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

随机推荐

  1. Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Summary 众所周知,化学突触传递是不可靠的过程,但是这种不可靠的函数仍然不清楚.在这里,我考虑这样一个假设,即大脑利用突触传递的随机 ...

  2. 【python系统学习17】python中的文件读写

    python中的文件读写 文件读写,是Python代码调用电脑文件的主要功能,能被用于读取和写入文本.音频片段.Excel文档.邮件以及任何保存在电脑上的东西. 可使用python批量的操作本地文件, ...

  3. MySQL 索引结构

    谈到 MYSQL 索引服务端的同学应该是熟悉的不能再熟悉,新建表的时候怎么着都知道先来个主键索引,对于经常查询的列也会加个索引加快查询速度.那么 MYSQL 索引都有哪些类型呢?索引结构是什么样的呢? ...

  4. Mysql探索之索引详解,又能和面试官互扯了~

    前言 索引是什么?有什么利弊?一旦在面试中被问道,对于新入门的小白可能是个棘手的问题. 本篇文章将会详细讲述什么是索引.索引的优缺点.数据结构等等常见的知识. 什么是索引 索引就是一种的数据结构,存储 ...

  5. 2020.08.31 Unit 10(暂未完成)

    [重点短语] 01.at night 在晚上 02.in a more natural environment 在一个更加自然的环境中 03.all year round 一年到头,终年 04.be ...

  6. Labview学习之路(三)前面板数值控件

    首先看一下前面板都有什么数值控件(我用的labview是17年的,其他版本可能会有不同) 我个人将他们分成了六个部分 第一部分 这个部分大家很好理解,数值输入数值输出,时间输入和时间输出,这里我们讲一 ...

  7. android Studio(3.1) 常用快捷键

    说  明 快捷键 全部保存 Ctrl + S 最大话/最小化编辑器 Ctrl + Shift + F12 搜索内容(包括代码和菜单) 按两次Shift 查找 Ctrl + F 查找下一个 F3 查找上 ...

  8. Web测试和前端技术

    Html Form表单 用户需要输入内容的地方一般有一个表单元素 method:GET/POST action:要打开/提交的目文件 Table表格 检查表格数据和数据库的一致性 表格的布局检测:填满 ...

  9. JS实现斐波那契数列的五种方式

    下面是五种实现斐波那契数列的方法 循环   function fibonacci(n){ var res1 = 1; var res2 = 1; var sum = res2; for(var i = ...

  10. 使用jackson解析json串得到树模型,然后遍历树模型获得需要的数据

    Problem:从网址 http://quotes.money.163.com/hs/service/marketradar_ajax.php?host=http%3A%2F%2Fquotes.mon ...