Description

At the first holiday in spring, the town Shortriver traditionally conducts a flower festival. Townsfolk wear traditional wreaths during these festivals. Each wreath contains exactly k flowers.

The work material for the wreaths for all n citizens of Shortriver is cut from the longest flowered liana that grew in the town that year. Liana is a sequence a1, a2, ..., am, where ai is an integer that denotes the type of flower at the position i. This year the liana is very long (m≥n⋅k), and that means every citizen will get a wreath.

Very soon the liana will be inserted into a special cutting machine in order to make work material for wreaths. The machine works in a simple manner: it cuts k flowers from the beginning of the liana, then another k flowers and so on. Each such piece of k flowers is called a workpiece. The machine works until there are less than k flowers on the liana.

Diana has found a weaving schematic for the most beautiful wreath imaginable. In order to weave it, k flowers must contain flowers of types b1, b2, ..., bs, while other can be of any type. If a type appears in this sequence several times, there should be at least that many flowers of that type as the number of occurrences of this flower in the sequence. The order of the flowers in a workpiece does not matter.

Diana has a chance to remove some flowers from the liana before it is inserted into the cutting machine. She can remove flowers from any part of the liana without breaking liana into pieces. If Diana removes too many flowers, it may happen so that some of the citizens do not get a wreath. Could some flowers be removed from the liana so that at least one workpiece would conform to the schematic and machine would still be able to create at least n workpieces?

Input

The first line contains four integers m, k, n and s (1≤n,k,m≤5⋅105, k⋅n≤m, 1≤s≤k): the number of flowers on the liana, the number of flowers in one wreath, the amount of citizens and the length of Diana's flower sequence respectively.

The second line contains m integers a1, a2, ..., am (1≤ai≤5⋅105) — types of flowers on the liana.

The third line contains s integers b1, b2, ..., bs (1≤bi≤5⋅105) — the sequence in Diana's schematic.

Output

If it's impossible to remove some of the flowers so that there would be at least n workpieces and at least one of them fullfills Diana's schematic requirements, output −1.

Otherwise in the first line output one integer d — the number of flowers to be removed by Diana.

In the next line output d different integers — the positions of the flowers to be removed.

If there are multiple answers, print any.

Solution

显然,删掉的数的个数是(m-kn)个

最长的序列长度就是(k+m-k
n)

O(n)求出是否有合法情况再暴力减就行了

#include <cstdio>
#include <algorithm>
#define N 500001
#define open(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
#define fo(i,a,b) for (register int i=a;i<=b;i++)
using namespace std;
int m,k,n,s,t,tot,cnt,del,len,l,r,a[N],ans[N],g[N],need[N];
bool bz[N];
void write(int x)
{
fo(i,x,x+len)
{
if (cnt==del) break;
if (g[a[i]]) g[a[i]]--;else
{
ans[++cnt]=i;
if (cnt==del) break;
}
}
printf("%d\n",del);
fo(i,1,cnt)
printf("%d ",ans[i]);
exit(0);
}
int main()
{
open("diana");
scanf("%d%d%d%d",&m,&k,&n,&s);
fo(i,1,m)
scanf("%d",&a[i]);
fo(i,1,s)
{
scanf("%d",&t);
need[t]++;
g[t]++;
if (need[t]==1) tot++;
bz[t]=1;
}
del=m-k*n;
len=del+k;
fo(i,1,len)
{
if (bz[a[i]])
{
need[a[i]]--;
if (!need[a[i]]) tot--;
}
if (!tot) write(1);
}
l=1;r=len;
fo(i,2,m-len+1)
{
if (bz[a[l]])
{
need[a[l]]++;
if (need[a[l]]==1) tot++;
}
l++;r++;
if (bz[a[r]])
{
need[a[r]]--;
if (!need[a[r]]) tot--;
}
if (!tot && !((l-1)%k)) write(i);
}
printf("-1");
return 0;
}

CF1120 A. Diana and Liana的更多相关文章

  1. 【Codeforces 1120A】Diana and Liana

    Codeforces 1120 A 题意:给\(n\)个数\(a_1..a_n\),要从其中删去小于等于\(n-m\times k\)个数,使得将这个数组分成\(k\)个一段的序列时有至少一段满足以下 ...

  2. Codeforces Round #543 Div1题解(并不全)

    Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...

  3. Codeforces Round #539&#542&#543&#545 (Div. 1) 简要题解

    Codeforces Round #539 (Div. 1) A. Sasha and a Bit of Relax description 给一个序列\(a_i\),求有多少长度为偶数的区间\([l ...

  4. Codeforces Round #543 (Div. 1, based on Technocup 2019 Final Round) 题解

    题面戳这里 A. Diana and Liana 首先如果s>ks>ks>k一定无解,特判一下.那么我们考虑找恰好满足满足题目中的要求的区间[l,r][l,r][l,r],那么需要要 ...

  5. 记得有一个奇怪的ORA-04028: cannot generate diana for object

    开发商称新一package,目前已经在翻译过程中的一些错误.提示PL/SQL:ORA-00942: table or view does not exists.这是一个非常明显的错误,即要么是表不存在 ...

  6. 尝试造了个工具类库,名为 Diana

    项目地址: diana 文档地址: http://muyunyun.cn/diana/ 造轮子的意义 为啥已经有如此多的前端工具类库还要自己造轮子呢?个人认为有以下几个观点吧: 定制性强,能根据自己的 ...

  7. ORA-04028: cannot generate diana for object xxx

    在ORACLE数据库(10.2.0.5.0)上修改一个包的时候,编译有错误,具体错误信息为"ORA-04028: cannot generate diana for object xxx&q ...

  8. k-means|k-mode|k-prototype|PAM|AGNES|DIANA|Hierarchical cluster|DA|VIF|

    聚类算法: 对于数值变量,k-means eg:k=4,则选出不在原数据中的4个点,计算图形中每个点到这四个点之间的距离,距离最近的便是属于那一类.标准化之后便没有单位差异了,就可以相互比较. 对于分 ...

  9. DIANA算法

    DIANA算法 DIANA算法示例 DIANA算法练习

随机推荐

  1. nvm -- node 多版本管理器

    Node.js 越来越热,应用的场景也越来越多. 在开发中,我们可能同时在进行多个 node 项目,而这些不同的项目所使用的 node 版本又是不一样的,或者是要用更新的 node 版本进行试验和学习 ...

  2. Linux的CentOs系统查看CPU个数、核心数、线程数

    1.查看CPU物理个数 grep 'physical id' /proc/cpuinfo | sort -u | wc -l 或 cat /proc/cpuinfo| grep "physi ...

  3. 【Eclipse+PyDev】使用Python的IDE安装及配置详解

    转的文章 https://blog.csdn.net/jkwwwwwwwwww/article/details/51338230 https://blog.csdn.net/Jkwwwwwwwwww/ ...

  4. Java数据结构——根据遍历结果构造二叉树

    一.已知前序.中序.后序遍历结果的其中两种,还原二叉树. ①已知前序遍历结果:1,2,4,5,3,6,7 中序遍历结果:4,2,5,1,6,3,7还原二叉树后BFS出结果. TreeNode.java ...

  5. muduo源码解析2-AtomicIntegerT类

    AtomicIntegerT template<typename T> class atomicTntergerT:public noncopyable { }; 作用: 与std::ao ...

  6. 从 BIO、NIO 聊到 Netty,最后还要实现个 RPC 框架!

    大家好,我是 「后端技术进阶」 作者,一个热爱技术的少年. 觉得不错的话,欢迎 star!ღ( ´・ᴗ・` )比心 Netty 从入门到实战系列文章地址:https://github.com/Snai ...

  7. 第3关-input()函数

    第3关-input()函数 一.input()函数 import time print('亲爱的同学:') time.sleep(1) print('我们愉快地通知您,您已获准在霍格沃茨魔法学校就读. ...

  8. Azure Logic App 入门(一)

    一,引言 前两天看一个azure相关的题,接触到一个叫 “Azure Logic App” 的服务,刚好,今天抽空学习以下,顺便结合它做一篇入门的分析文章. 首先,我们得对它有个大概的认识,了解以下A ...

  9. Redis+Kafka异步提高并发

    Redis+Kafka异步提高并发 Redis+Kafka异步提高并发 设计 实现 提交请求接口 Kafka消费队列 异步处理Service 客户端轮询获取结果 Redis集群节点配置 KafKa集群 ...

  10. JAVA开源软件的技术选型--开源软件诞生2

    技术准备--第2篇 用日志记录“开源软件”的诞生 赤龙ERP开源地址,点亮星标,支持一下,万分感谢 码云:https://gitee.com/redragon/redragon-erp github: ...